精英家教网 > 高中数学 > 题目详情
已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列
a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.
(1) bn=2·3n1-1 (2)
(1)由题意知a52=a1·a17,即(a1+4d)2=a1(a1+16d)a1d=2d2,
d≠0,∴a1=2d,数列{}的公比q==3,
=a1·3n1                  ①
=a1+(bn-1)d=                   ②
由①②得a1·3n1=·a1.∵a1=2d≠0,∴bn=2·3n1-1.
(2)Tn=Cb1+Cb2+…+Cbn
=C (2·30-1)+C·(2·31-1)+…+C(2·3n1-1)
=(C+C·32+…+C·3n)-(C+C+…+C)
=[(1+3)n-1]-(2n-1)= ·4n-2n+,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列的首项,前项和为,且
(Ⅰ)证明数列是等比数列;
(Ⅱ)令,求函数在点处的导数,并比较的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

An为数列{an}的前n项和,An= (an-1),数列{bn}的通项公式为bn=4n+3;
(1)求数列{an}的通项公式;
(2)把数列{an}与{bn}的公共项按从小到大的顺序排成一个新的数列,证明:数列{dn}的通项公式为dn=32n+1;
(3)设数列{dn}的第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和;Dn为数列{dn}的前n项和,Tn=BrDn,求 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1)求数列{bn}的通项bn
(2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的前n项和,试比较Snlogabn+1的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.
(1)设ak(1≤kn)为第k位职工所得奖金金额,试求a2,a3,并用knb表示ak(不必证明);
(2)证明akak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;
(3)发展基金与nb有关,记为Pn(b),对常数b,当n变化时,求Pn(b).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在等比数列中,,并且(1)求以及数列的通项公式;(2)设,求当最大时的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列首项,前项和之间满足
(1)求证:数列是等差数列  (2)求数列的通项公式
(3)设存在正数,使对于一切都成立,求的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列中,,且)。
(Ⅰ)设),求数列的通项公式;
(Ⅱ)求数列的通项公式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 设各项均为正数的数列的前n项和为,对于任意正整数n,都有等式:成立,求的通项an.

查看答案和解析>>

同步练习册答案