ij¹«Ë¾È«ÄêµÄÀûÈóΪbÔª£¬ÆäÖÐÒ»²¿·Ö×÷Ϊ½±½ð·¢¸ønλְ¹¤£¬½±½ð·ÖÅä·½°¸ÈçÏÂ:Ê×ÏȽ«Ö°¹¤°´¹¤×÷Òµ¼¨(¹¤×÷Òµ¼¨¾ù²»Ïàͬ)´Ó´óµ½Ð¡£¬ÓÉ1µ½nÅÅÐò£¬µÚ1λְ¹¤µÃ½±½ðÔª£¬È»ºóÔÙ½«Óà¶î³ýÒÔn·¢¸øµÚ2λְ¹¤£¬°´´Ë·½·¨½«½±½ðÖðÒ»·¢¸øÿλְ¹¤£¬²¢½«×îºóÊ£Óಿ·Ö×÷Ϊ¹«Ë¾·¢Õ¹»ù½ð.
(1)Éèak(1¡Ük¡Ün)ΪµÚkλְ¹¤ËùµÃ½±½ð½ð¶î£¬ÊÔÇóa2,a3£¬²¢ÓÃk¡¢nºÍb±íʾak(²»±ØÖ¤Ã÷)£»
(2)Ö¤Ã÷ak£¾ak+1(k=1,2,¡­,n£­1),²¢½âÊʹ˲»µÈʽ¹ØÓÚ·ÖÅäÔ­ÔòµÄʵ¼ÊÒâÒ壻
(3)·¢Õ¹»ù½ðÓënºÍbÓйأ¬¼ÇΪPn(b),¶Ô³£Êýb£¬µ±n±ä»¯Ê±£¬ÇóPn(b).
(1) ak= (1£­)k£­1b; (2) ½±½ð·ÖÅä·½°¸ÌåÏÖÁË¡°°´ÀÍ·ÖÅ䡱»ò¡°²»³Ô´ó¹ø·¹¡±µÄÔ­Ôò£»(3).
(1)µÚ1λְ¹¤µÄ½±½ða1=£¬
µÚ2λְ¹¤µÄ½±½ða2=(1£­)b£¬
µÚ3λְ¹¤µÄ½±½ða3=(1£­)2b£¬¡­£¬
µÚkλְ¹¤µÄ½±½ðak= (1£­)k£­1b;
(2)ak£­ak+1=(1£­)k£­1b£¾0£¬´Ë½±½ð·ÖÅä·½°¸ÌåÏÖÁË¡°°´ÀÍ·ÖÅ䡱»ò¡°²»³Ô´ó¹ø·¹¡±µÄÔ­Ôò¡£
(3)Éèfk(b)±íʾ½±½ð·¢¸øµÚkλְ¹¤ºóËùÊ£ÓàÊý£¬
Ôòf1(b)=(1£­)b,f2(b)=(1£­)2b,¡­,fk(b)=(1£­)kb.
µÃPn(b)=fn(b)=(1£­)nb,
¹Ê.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=a1x+a2x2+a3x3+¡­+anxn£¬n¡ÊN*ÇÒa1¡¢a2¡¢a3¡¢¡­¡­¡¢an¹¹³ÉÒ»¸öÊýÁÐ{an}£¬Âú×ãf(1)=n2.
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬²¢Çó£»
£¨2£©Ö¤Ã÷0£¼f()£¼1.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨±¾ÌâÂú·Ö12·Ö£©ÉèÊýÁеÄÇ°ºÍΪ£¬ÒÑÖª£¬£¬£¬£¬
Ò»°ãµØ£¬£¨£©£®
£¨¢ñ£©Ç󣻣¨¢ò£©Ç󣻣¨¢ó£©ÇóºÍ£º£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬¹«²îd¡Ù0,ÓÉ{an}ÖеIJ¿·ÖÏî×é³ÉµÄÊýÁÐ
a,a,¡­,a,¡­ÎªµÈ±ÈÊýÁУ¬ÆäÖÐb1=1,b2=5,b3=17.
(1)ÇóÊýÁÐ{bn}µÄͨÏʽ£»
(2)¼ÇTn=Cb1+Cb2+Cb3+¡­+Cbn,Çó.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨12·Ö£©ÒÑÖªÊǸ÷ÏΪÕýÊýµÄÊýÁУ¬ÎªÆäÇ°ÏîµÄºÍ£¬ÇÒ
£¨I£©·Ö±ðÇ󣬵ÄÖµ£»£¨II£©ÇóÊýÁеÄͨÏ£¨III£©ÇóÖ¤£º

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÒÑ֪ΪµÈ²îÊýÁУ¬£¬Ôò         

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÔڵȲîÊýÁÐÖУ¬ÒÑÖª£¬£®
£¨1£©ÇóÊ×ÏîÓ빫²î£¬²¢Ð´³öͨÏʽ£»
£¨2£©ÖÐÓжàÉÙÏîÊôÓÚÇø¼ä£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÉèÊÇÊ×ÏîΪ1µÄÕýÏîÊýÁУ¬ÇÒ£¬
ÔòÊýÁеÄͨÏî        .

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸