精英家教网 > 高中数学 > 题目详情
8.三棱锥P-ABC中,PA=PB=PC=AB=AC=1,∠BAC=90°,则PA与底面ABC所成角的大小为45°.

分析 取BC的中点E,根据三角形的边长关系证明∠PAE是PA与底面ABC所成的角即可.

解答 解:∵AB=AC=1,∠BAC=90°,
∴BC=$\sqrt{2}$,
∵PB=PC=1,∴∠BPC=90°,
取BC的中点E,
则PE=AE=$\sqrt{2}$,
∵PA=1,
∴∠PEA=90°,
则∠PAE=45°,
∵E是BC的中点,
∴PE⊥BC,AE⊥BC,
∴BC⊥平面ABC,
则∠PAE是PA与底面ABC所成的角,
即PA与底面ABC所成角的大小为45°.
故答案为:45°

点评 本题主要考查直线和平面所成角的大小的求解,根据定义确定线面角是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求230-3除以7的余数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}中,an=$\frac{n-\sqrt{2012}}{n-\sqrt{2013}}$,则该数列前100项中的最大项与最小项分别是(  )
(参考数据:442=1936,452=2045)
A.a1,a50B.a1,a44C.a45,a44D.a45,a50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={(x,y)|y=$\sqrt{{2a}^{2}-{x}^{2}}$,a>0},B={(x,y)|(x-1)2+(y-$\sqrt{3}$)2=a2,a>0},若A∩B≠∅,则amax=2$\sqrt{2}$+2amin=2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex-x-1,x∈R,其中,e是自然对数的底数.函数g(x)=xsinx+cosx+1,x>0.
(Ⅰ)求f(x)的最小值;
(Ⅱ)将g(x)的全部零点按照从小到大的顺序排成数列{an},求证:
(1)$\frac{(2n-1)π}{2}$<an<$\frac{(2n+1)π}{2}$,其中n∈N*
(2)ln(1+$\frac{1}{{{a}_{1}}^{2}}$)+ln(1+$\frac{1}{{{a}_{2}}^{2}}$)+ln(1+$\frac{1}{{{a}_{3}}^{2}}$)+…+ln(1+$\frac{1}{{{a}_{n}}^{2}}$)<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“存在x∈R,使得x2+2x+1=0成立”的否定是对任意x∈R,都有x2+2x+1≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列五四个命题:
①若直线l1:a2x-y+6=0与直线l2:4x-(a-3)y+9=0互相垂直,则a=-1;
②圆C1:x2+y2+2x=0与圆C2:x2+y2+2y-1=0恰有两条公切线;
③已知F1,F2是椭圆$\frac{x^2}{16}+\frac{y^2}{9}$=1的左右焦点,P为椭圆上一点,且|PF1|=3,则|PF2|=1;
④双曲线$\frac{y^2}{9}-\frac{x^2}{16}$=1的顶点到渐近线的距离为$\frac{12}{5}$;
⑤已知过点P(2,0)的直线与抛物线y2=8x交于A、B两点,O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OB}$=-12.
其中正确命题的序号是②④⑤(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\frac{1}{n}{e^{mx}}$(m,n∈R+)的图象在x=0处的切线l与圆C:x2+y2=1相切,则m+n的最大值为(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线y2=2px(p>0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,若点A是抛物线与双曲线的一个交点,且AF⊥x轴,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\sqrt{2}$+1C.$\sqrt{3}$+1D.$\frac{2\sqrt{2}+1}{2}$

查看答案和解析>>

同步练习册答案