精英家教网 > 高中数学 > 题目详情
4.给出下列说法:
①函数$y=2tan({2x+\frac{π}{3}})$的对称中心是$({\frac{kπ}{2}-\frac{π}{6}\;,\;\;0})$;
②函数$f(x)=2tan({-2x+\frac{π}{4}})$单调递增区间是$({\frac{kπ}{2}-\frac{π}{8}\;,\;\;\frac{kπ}{2}+\frac{3π}{8}})({k∈Z})$;
③函数$y=2tan({2x+\frac{π}{3}})$的定义域是$\left\{{x|x≠kπ+\frac{π}{12}({k∈Z})}\right\}$;
④函数y=tanx+1在$[{-\frac{π}{4}\;,\;\;\frac{π}{3}}]$上的最大值为$\sqrt{3}+1$,最小值为0.
其中正确说法有几个(  )
A.1B.2C.3D.4

分析 利用正切函数的图象和性质,判断各个选项是否正确,从而得出结论.

解答 解:①对于函数$y=2tan({2x+\frac{π}{3}})$,令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,
可得它的图象的对称中心是($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,故A错误.
②对于函数$f(x)=2tan({-2x+\frac{π}{4}})$=-2tan(2x-$\frac{π}{4}$),该函数只有减区间,而没有增区间,故B错误.
③对于函数$y=2tan({2x+\frac{π}{3}})$,令2x+$\frac{π}{3}$≠kπ+$\frac{π}{2}$,求得x≠$\frac{1}{2}$kπ+$\frac{π}{12}$,
可得该函数的定义域是{x|x≠$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈Z},故C正确.
④由于函数y=tanx+1在$[{-\frac{π}{4}\;,\;\;\frac{π}{3}}]$上单调递增,故它的最大值为tan$\frac{π}{3}$+1=$\sqrt{3}+1$,最小值为tan(-$\frac{π}{4}$)+1=0,故D正确,
故选:B.

点评 本题主要考查正切函数的图象和性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=lnx+x2,则函数f(x)在[1,e]上的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,AB=3,BC=4,∠ABC=120°,若把△ABC绕直线AB旋转一周,则所形成的几何体的体积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设z=1-i(i是虚数单位),若$\frac{2a}{{i}^{2}}$+$\overline{z}$($\overline{z}$为z的共轭复数,a为实数)为纯虚数,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.比较2x2+2x-5与x2+x-6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若定义在R上的偶函数y=f(x)是[0,+∞)上的递增函数,则不等式f(log2x)<f(-1)的解集($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个盒子中装有5个编号依次为1,2,3,4,5的球,这5个球除号码外完全相同,有放回地连续抽取两次,每次任意地取出一个球.
(1)用列举法列出所有可能的结果;
(2)求事件A=“取出球的号码之和不小于6的概率”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=x3-6x,过点A(2,m)(m≠-4)可作曲线y=f(x)的三条切线,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点Q(2,1)的双曲线方程是 (  )
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{2}$-y2=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

同步练习册答案