【题目】在湖北新冠疫情严重期间,我市响应国家号召,召集医务志愿者组成医疗队驰援湖北.某医院有2名女医生,3名男医生,3名女护士,1名男护士报名参加,医院计划从医生和护士中各选2名参加医疗队.
(1)求选出的4名志愿全是女性的选派方法数;
(2)记
为选出的4名选手中男性的人数,求
的概率分布和数学期望.
科目:高中数学 来源: 题型:
【题目】已知首项相等的两个数列
满足
.
(1)求证:数列
是等差数列;
(2)若
,求
的前n项和
;
(3)在(2)的条件下,数列
是否存在不同的三项构成等比数列?如果存在,请你求出所有符合题意的项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱
中,
且
,
是棱
上的动点,
是
的中点.
(1)当
是
中点时,求证:
平面
;
(2)在棱
上是否存在点
,使得平面
与平面
所成锐二面角为
,若存在,求
的长,若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
:
的左、右焦点分别是
、
,左、右两顶点分别是
、
,弦AB和CD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点
如图).
⑴若
是
的一条渐近线的一个方向向量,试求
的两渐近线的夹角
;
⑵若
,
,
,
,试求双曲线
的方程;
⑶在⑴的条件下,且
,点C与双曲线的顶点不重合,直线
和直线
与直线l:
分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量
(万只)与时间
(年)(其中
)的关系为
.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值
(其中
为常数,且
)来进行生态环境分析.
(1)当
时,求比值
取最小值时
的值;
(2)经过调查,环保部门发现:当比值
不超过
时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数
的取值范围.(
为自然对数的底,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,四边形
为平行四边形,
,
为
中点,
![]()
(1)求证:
平面
;
(2)若
是正三角形,且
.
(Ⅰ)当点
在线段
上什么位置时,有
平面
?
(Ⅱ)在(Ⅰ)的条件下,点
在线段
上什么位置时,有平面
平面
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】沙漏是我国古代的一种计时工具,是用两个完全相同的圆锥顶对顶叠放在一起组成的(如图).在一个圆锥中装满沙子,放在上方,沙子就从顶点处漏到另一个圆锥中,假定沙子漏下来的速度是恒定的.已知一个沙漏中沙子全部从一个圆锥中漏到另一个圆锥中需用时10分钟.那么经过5分钟后,沙漏上方圆锥中的沙子的高度与下方圆锥中的沙子的高度之比是(假定沙堆的底面是水平的)( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com