分析:根据题目给出的角α和β的范围,求出45°-α和135°+β的范围,然后根据给出cos(45°-α)与sin(135°+β)的值求出对应的异名三角函数值,把要求的sin(α+β)和cos(α-β)拆配成sin(α+β)=-cos[(135°+β)-(45°-α)]和sin(α+β)=-cos[(135°+β)-(45°-α)]求解.
解答:解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
∵
cos(45°-α)=,∴
sin(45°-α)=-,
∵
sin(135°+β)=,∴
cos(135°+β)=-∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=
-[(-)+(-)]=cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-
[(-)-(-)]=
点评:本题考查了两角和与差的正余弦函数,训练了三角函数求值的拆配角方法,解答此题的关键是如何正确把要求三角函数值的角拆配成已知三角函数值的角,解答时一定要注意角的范围.