分析 (1)由2,an,Sn成等差数列.可得2an=Sn+2,再利用递推关系、等比数列的通项公式即可得出;
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)∵2,an,Sn成等差数列.
∴2an=Sn+2,
∴n=1,2a1=a1+2,解得a1=2;
当n≥2时,2an-1=Sn-1+2,∴2an-2an-1=an,化为an=2an-1,
∴数列{an}成等比数列,首项为2,公比为2,
∴an=2n.
(2)cn=n•an=n•2n.
∴数列{cn}的前n项和Tn=2+2×22+3×22+…+n•2n,
2Tn=22+2×23+…+(n-1)•2n+n•2n+1,
∴-Tn=2+22+23+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
点评 本题考查了递推关系、“错位相减法”、等差数列与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,\frac{1}{2}})$ | B. | $({\frac{1}{2},+∞})$ | C. | $({-2,\frac{1}{2}})$ | D. | $({\frac{1}{2},3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{3}$,3] | B. | [1,3] | C. | (0,$\frac{1}{3}$) | D. | (0,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com