精英家教网 > 高中数学 > 题目详情
已知圆C1x2+y2-4x-2y-5=0,圆C2x2+y2+2x-2y-14=0
(1)试判断两圆的位置关系;
(2)直线ι过点(6,3)与圆C1相交于A,B两点,且|AB|=2
6
,求直线ι的方程.
分析:(1)把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距等于3,大于半径之差而小于半径之和,可得两个圆相交.
(2)分直线t的斜率不存在时,经过检验不满足条件.当斜率存在时,根据弦长AB=2
6
,求出弦心距d,再由点到直线的距离公式可得d,由此求得斜率的值,即可得到直线t的方程.
解答:解:(1)由于 圆C1x2+y2-4x-2y-5=0,即 (x-2)2+(y-1)2=10,表示以C1(2,1)为圆心,
半径等于
10
的圆.
C2x2+y2+2x-2y-14=0,即 (x+1)2+(y-1)2=16,表示以C2(-1,1)为圆心,半径等于4的圆.
由于两圆的圆心距等于
32+0
=3,大于半径之差而小于半径之和,故两个圆相交.
(2)直线ι过点(6,3)与圆C1相交于A,B两点,且|AB|=2
6
,当AB的斜率不存在时,直线ι的方程为x=6,
此时直线t与圆C1相离,不满足条件.
当AB的斜率不存在时,设直线ι的方程为y-3=k(x-6),即 kx-y+3-6k=0,
由弦长公式可得圆心到直线t的距离d=
10-6
=2,
再由点到直线的距离公式可得d=2=
|2k-1+3-6k|
k2+1
,解得 k=0,或 k=
4
3

故直线t的方程为 y=3或
4
3
x-y-5=0.
点评:本题主要考查圆的标准方程,直线和圆的位置关系,点到直线的距离公式、弦长公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州二模)已知圆C1:x2+y2=2和圆C2,直线l与C1切于点M(1,1),圆C2的圆心在射线2x-y=0(x≥0)上,且C2经过坐标原点,如C2被l截得弦长为4
3

(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=2,直线l与圆C1相切于点A(1,1);圆C2的圆心在直线x+y=0上,且圆C2过坐标原点.
(1)求直线l的方程;
(2)若圆C2被直线l截得的弦长为8,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=10与圆C2x2+y2+2x+2y-14=0
(1)求证:圆C1与圆C2相交;
(2)求两圆公共弦所在直线的方程;
(3)求经过两圆交点,且圆心在直线x+y-6=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+(y+5)2=5,设圆C2为圆C1关于直线l对称的圆,则在x轴上是否存在点P,使得P到两圆的切线长之比为
2
?荐存在,求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,已知圆C1x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A、B,定点M坐标为(0,-1),直线MA,MB分别与C1相交于点D、E.
(1)求证:MA⊥MB.
(2)记△MAB,△MDE的面积分别为S1、S2,若
S1S2
,求λ的取值范围.

查看答案和解析>>

同步练习册答案