| A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1] |
分析 首先画出函数图象,利用数形结合和函数的单调性即可得出.
解答 解:如图所示:![]()
①当x≥2时,由函数f(x)=$\frac{2}{x}$单调递减,可得:0<f(x)=$\frac{2}{x}$;
②当0<x<2时,由函数f(x)=(x-1)3单调递增可得:-1<f(x)<1.
由图象可知:由0<2k<1可得0<k<$\frac{1}{2}$,
故当0<k<$\frac{1}{2}$时,函数y=kx与y=f(x)的图象有且只有两个交点,
∴满足关于x的方程f(x)=kx有两个不同的实根的实数k的取值范围是
(0,$\frac{1}{2}$).
故选:A.
点评 本题考查了利用数形结合求方程根的问题;熟练掌握数形结合的思想方法和函数的单调性是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | [1,3) | B. | (-∞,1]∪(3,+∞) | C. | (1,3] | D. | (-∞,1)∪[3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 12 | C. | ±12 | D. | ±15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±4 | B. | 4 | C. | ±$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com