精英家教网 > 高中数学 > 题目详情
3.已知函数$y=\sqrt{x-1}+{log_3}(3-x)$,则其定义域为(  )
A.[1,3)B.(-∞,1]∪(3,+∞)C.(1,3]D.(-∞,1)∪[3,+∞)

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{x-1≥0}\\{3-x>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≥1}\\{x<3}\end{array}\right.$,
解得1≤x<3,
即函数的定义域为[1,3),
故选:A.

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.4名学生报名参加语文、数学、英语三种兴趣小组,每人选报1种,则不同选法有(  )
A.64种B.81种C.24种D.4种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{\sqrt{2}sin(x-\frac{π}{4})}{2sin(x+π)-cosx}$
(1)若tanx=$\frac{1}{2}$,计算f(x)的值;
(2)若f(x)>1,求tanx的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知曲线${C_1}:\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$(θ为参数)与曲线${C_2}:\left\{\begin{array}{l}x=t\\ y=kt-2\end{array}\right.$(t为参数)有一个公共点,则实数k的值为$±\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l的方程为3x+4y-12=0
(1)若l′与l平行,且过点(-1,3),求直线l′的方程;
(2)求l′与坐标轴围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{{cos{{10}°}+\sqrt{3}sin{{10}°}}}{{\sqrt{1-cos{{80}°}}}}$的值为(  )
A.-2B.2C.$-\sqrt{2}$D..$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若tanα=3,则$\frac{2sinαcosα}{si{n}^{2}α+2co{s}^{2}α}$的值为(  )
A.$\frac{6}{11}$B.$\frac{3}{11}$C.$\frac{11}{3}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知0<x<2,0<y<2,则$\sqrt{{x^2}+{y^2}}+\sqrt{{x^2}+{{(2-y)}^2}}+\sqrt{{{(2-x)}^2}+{y^2}}+\sqrt{{{(2-x)}^2}+{{(2-y)}^2}}$最小值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}\frac{2}{x},x≥2\\{(x-1)^3},0<x<2\end{array}\right.$若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

同步练习册答案