精英家教网 > 高中数学 > 题目详情
如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,ABCD,AB=AD=1,CD=2,DE=4,M为CE的中点.
(Ⅰ)求证:BM平面ADEF:
(Ⅱ)求证:BC⊥平面BDE;
(Ⅲ)求三棱锥C-MBD的体积.
(I)证明:取DE中点N,连接MN,AN
在△EDC中,M、N分别为EC,ED的中点,所以MNCD,且MN=
1
2
CD.
由已知ABCD,AB=
1
2
CD,所以MNAB,且MN=AB.
所以四边形ABMN为平行四边形,所以BMAN
又因为AN?平面ADEF,且BM?平面ADEF,
所以BM平面ADEF;

(II)证明:在矩形ADEF中,ED⊥AD,
又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD,所以ED⊥BC.
在直角梯形ABCD中,AB=AD=1,CD=2,可得BC=
2

在△BCD中,BD=BC=
2
,CD=2,
因为BD2+BC2=CD2,所以BC⊥BD.
因为BD∩DE=D,所以BC⊥平面BDE,
(Ⅲ)取CD中点G,连接MG,则MGDE且MG=
1
2
DE=2

∵ED⊥平面ABCD
∴MG⊥平面ABCD
∵BC⊥DB且BC=BD=
2

∴VC-MBD=VM-BCD=
1
3
S△BCD×MG
=
1
3
×
1
2
×
2
×
2
×2=
2
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

空间四边形ABCD的对棱AD,BC成60°的角,且AD=BC=a,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H.
(1)求证:四边形EFGH为平行四边形;
(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

△ABC中,∠ABC=90°,PA⊥平面ABC,则图中直角三角形的个数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求二面角A-BC-P的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,四棱锥P-ABCD的底面是矩形,PA⊥面ABCD,PA=2
19
,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.
(1)求EF的长;
(2)证明:EF⊥PC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ABC,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°,侧面PAD为正三角形,其所在的平面垂直于底面ABCD,求证:AD⊥PB.

查看答案和解析>>

同步练习册答案