精英家教网 > 高中数学 > 题目详情
7.已知实数a∈R,解关于不等式x2-(a+2)x+2a<0.

分析 原不等式可转化为:(x-a)(x-2)<0,分①a>2,②a=2,③a<2三种情况讨论进行求解.

解答 解:原不等式可转化为:(x-a)(x-2)<0,
①当a>2时,不等式的解集为{x|2<x<a},
②a=2时,不等式的解答集为∅,
③a<2时不等式的解集合为{x|a<x<2}.

点评 本题主要考查了一元二次不等式的解法,分类讨论的思想在解题中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.根据如图框图,当输入的x=3时,则输出的y为(  )
A.0B.9C.10D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ) 计算:1.10+$\root{3}{512}$-0.5-2+lg25+2lg2;
(Ⅱ) 在△ABC中,sinA+cosA=$\frac{2}{3}$,求sinA•cosA的值,并判断三角形ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=b+logax(a>0且a≠1)的图象经过点(4,1)和(1,-1)
(1)求函数f(x)的解析式;
(2)令g(x)=2f(x+1)-f(x),求g(x)的最小值及取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x+$\frac{1}{x}$+a有零点,则实数a的取值范围是a≥2或a≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)=$\left\{\begin{array}{l}{\frac{{x}^{3}}{3},x≤1}\\{{x}^{2},x>1}\end{array}\right.$,函数f(x)在x=1不连续(连续或不连续).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如果平面直角坐标系中的两点A(a-1,a+1),B(a,a)关于直线L对称,那么直线L的
方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用0,1,2,3,4,5这6个数字.
(1)能组成多少个物重复数的四位偶数?
(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=ax2+bx+1(其中b>0)的图象过点(1,4),且其值域为[0,+∞).
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在区间[-2,2]上是单调函数,求k的取值范围.

查看答案和解析>>

同步练习册答案