【题目】已知等比数列{an}满足27a2﹣a5=0,a1a2=a3 . (Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=3log3an+3,求证:{bn}是等差数列.
【答案】(Ⅰ)解:∵等比数列{an}满足27a2﹣a5=0,a1a2=a3 , ∴27a1q﹣a1q4=0,a12q=a1q2 ,
∴a1=3,q=3,
∴an=3n;
(Ⅱ)证明:bn=3log3an+3=3n+3,
∴bn+1﹣bn=3,
∴{bn}是等差数列
【解析】(Ⅰ)利用等比数列{an}满足27a2﹣a5=0,a1a2=a3 , 建立方程,求出a1=3,q=3,即可求{an}的通项公式;(Ⅱ)bn=3log3an+3=3n+3,利用等差数列的定义,证明:{bn}是等差数列.
【考点精析】关于本题考查的等差数列的性质,需要了解在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知条件p:|x﹣4|≤6,条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是( )
A.(﹣∞,﹣1]
B.(﹣∞,9]
C.[1,9]
D.[9,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某种彩票发行1000000张,中奖率为0.001,则下列说法正确的是( )
A.买1张肯定不中奖
B.买1000张一定能中奖
C.买1000张也不一定能中奖
D.买1000张一定恰有1张能中奖
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com