精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图,抛物线的焦点为F,椭圆 的离心率,C1与C2在第一象限的交点为
(1)求抛物线C1及椭圆C2的方程;
(2)已知直线与椭圆C2交于不同两点A、B,点M满足,直线FM的斜率为k1,试证明
(1)(2)略
(1)将P()代入
抛物线C1的方程为,焦点F(0,)…………………………………2分
把P()代入=l得=l

解得
故椭圆C2的方程为…………………………………6分
(2)由
………………………………8分


即点为线段AB的中点,设
…………………………10分
…………………………11分
=………………………12分

,即.………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知半椭圆与半椭圆组成的曲线称为“果圆”,其中是对应的焦点。A1,A2和B1,B2是“果圆”与x,y轴的交点,M是线段A1A2的中点.
(1) 若三角形是底边F1F2长为6,腰长为5的等腰三角形,求“果圆”的方程;
(2)若“果圆”方程为:过F0的直线l交“果圆”于y轴右边的Q,N点,求△OQN的面积S△OQN的取值范围
(3) 若是“果圆”上任意一点,求取得最小值时点的横坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知,动点到定点的距离比到定直线的距离小.
(I)求动点的轨迹的方程;
(Ⅱ)设是轨迹上异于原点的两个不同点,,求面积的最小值;
(Ⅲ)在轨迹上是否存在两点关于直线对称?若存在,求出直线 的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆与双曲线的焦点相同,则        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与抛物线有相同的焦点,点A是两曲线的交点,且轴,则椭圆的离心率是 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过原点的直线与椭圆交于A、B两点,为椭圆的焦点,则四边形AF1BF2面积的最大值是                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆(1-m)x2my2=1的长轴长是                      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,过F2垂直于x轴的直线交椭圆于一点P,那么|PF1|的值是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线处的切线的斜率是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案