精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1.
(1)求函数f(x)的极大值和极小值;
(2)求函数f(x)在闭区间[-2,2]上的最大值和最小值.
分析:(1)根据函数f(x)=x3-3ax2+2bx在x=1处有极小值-1先求出函数中的参数a,b的值,再令导数等于0,求出极值点,判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值.再代入原函数求出极大值和极小值.
(2)列表比较函数的极值与端点函数值的大小,端点函数值与极大值中最大的为函数的最大值,端点函数值与极小值中最小的为函数的最小值.
解答:解:(1)函数f(x)=x3-3ax2+2bx的导数为f′(x)=3x2-6ax+2b
∵函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,∴f′(1)=0,f(1)=-1
即3-6a+2b=0,1-3a+2b=-1,解得a=
1
3
,b=-
1
2

∴f(x)=x3-x2-x,f′(x)=3x2-2x-1
令f′(x)=0,即3x2-2x-1=0,解得,x=-
1
3
,或x=1
又∵当x>1时,f′(x)>0,当-
1
3
<x<1时,f′(x)<0,当x<-
1
3
时,f′(x)>0,
∴函数在x=-
1
3
时有极大值为f(-
1
3
)=
5
27

函数在x=1时有极小值为f(1)=-1
(2)函数f(x)在闭区间[-2,2]上的f'(x)、f(x)的变化情况如下表:
 x -2 (-2,-
1
3
-
1
3
(-
1
3
,1)
 1  (1,2)  2
 f′(x)   +  0 -  0 +  
 f(x) -10  增  
5
27
 减 -1  增  2
∴当x=2时函数有最大值为2,当x=-2时,函数有最小值为-10
点评:本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案