精英家教网 > 高中数学 > 题目详情
函数f(x)=
x+cosx,(x≤0)
1
3
x3-4x+1,(x>0)
的零点个数为(  )
A.4B.3C.2D.无数个
当x≤0时,f(x)=x+cosx,
f′(x)=1-sinx≥0,
∴f(x)在(-∞,0)上单调递增,且f(0)=1>0,x→-∞时,f(x)→-∞,
∴f(x)在(-∞,0)上有一个零点;
当x>0时,f(x)=
1
3
x3-4x+1

f′(x)=x2-4=0,
解得x=2或x=-2(舍),
∴当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,
∴f(x)在(0,2)上单调递减,在(2,+∞)上单调递增,
且f(2)=
8
3
- 7
<0,f(0)=1>0,x→+∞时,f(x)→+∞,
∴f(x)在(0,+∞)上有两个零点;
综上函数f(x)=
x+cosx,(x≤0)
1
3
x3-4x+1,(x>0)
的零点个数为3个,
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)(x∈R)为奇函数,且存在反函数f-1(x)(与f(x)不同),F(x)=
2f(x)-2f-1(x)
2f(x)+2f-1(x)
,则下列关于函数F(x)的奇偶性的说法中正确的是(  )
A、F(x)是奇函数非偶函数
B、F(x)是偶函数非奇函数
C、F(x)既是奇函数又是偶函数
D、F(x)既非奇函数又非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)、g(x),下列说法正确的是(  )
A、f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数B、f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数C、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数D、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是


  1. A.
    [-5,5]
  2. B.
    [-数学公式数学公式]
  3. C.
    [-数学公式数学公式]
  4. D.
    [-数学公式数学公式]

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案