精英家教网 > 高中数学 > 题目详情
3.执行如图的框图,若输出结果为2,则输入的实数x的值是(  )
A.$\frac{3}{2}$B.$\frac{1}{4}$C.$\frac{\sqrt{2}}{2}$D.4

分析 若y=x-1=2,则x=3,与不满足条件x>1矛盾;若y=log2x=2,则x=4,满足条件x>1,符合题意,由此可得输入的实数x的值.

解答 解:若y=x-1=2,则x=3,与不满足条件x>1矛盾;
若y=log2x=2,则x=4,满足条件x>1,符合题意,
∴输入的实数x的值是4.
故选:D.

点评 本题是条件结构的程序框图,要注意执行的条件是否满足.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C经过三个点A(4,1),B(6,-3),C(-3,0).
(1)求圆C的标准方程;
(2)过点M(-4,-2)作圆C的切线,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知命题:在互相内切的两个圆的间隙中,依次作3个内切圆,若所作的圆除首末两个外各依次相切,则有$\frac{1}{{r}_{1}}$-$\frac{2}{{r}_{2}}$+$\frac{1}{{r}_{3}}$=0(其中ri,i=1,2,3依次表示3个内切圆的半径);在互相内切的两个圆的间隙中,依次作4个内切圆,若所作的圆除首末两个外各依次相切,则有$\frac{1}{{r}_{1}}$-$\frac{3}{{r}_{2}}$+$\frac{3}{{r}_{3}}$-$\frac{1}{{r}_{4}}$=0(其中ri,i=1,2,3,4依次表示3个内切圆的半径);…;类比上述结论得到一般的命题是:在互相内切的两个圆的间隙中,依次作n个内切圆,若所作的圆除首末两个外各依次相切,则有:$\frac{{C}_{n-1}^{0}}{{r}_{1}}-\frac{{C}_{n-1}^{1}}{{r}_{2}}$+…+$(-1)^{n-1}•\frac{{C}_{n-1}^{n-1}}{{r}_{n}}$=0(其中yi,i=1,2,…,n依次表示n个内切圆的半径).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.上面程序框图的结构中最突出的逻辑结构及输出的i的值是(  )
A.当型循环结构,-1B.当型循环结构,0
C.直到型循环结构,0D.直到型循环结构,-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线均与圆C:x2+y2-6y+5=0相切,且双曲线的焦距为6,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,若依次输入的x分别为$\frac{5π}{6}$、$\frac{π}{6}$,相应输出的y分别为y1、y2,则y1、y2的大小关系是(  )
A.y1=y2B.y1>y2C.y1<y2D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在对于实数x,[x]表示不超过的最大整数,观察下列等式:
[$\sqrt{1}$]+[$\sqrt{2}$]+[$\sqrt{3}$]=3
[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10
[$\sqrt{9}$]$+[\sqrt{10}]+[\sqrt{11}]+[\sqrt{12}]$+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21
按照此规律第n个等式为[$\sqrt{{n}^{2}}$]+[$\sqrt{{n}^{2}+1}$]+…+[$\sqrt{{n}^{2}+2n}$]=2n2+n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,则输出的S值为(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,A、B两座城市相距100千米,现计划在这两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°方向上,已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越保护区,为什么?

查看答案和解析>>

同步练习册答案