分析 过点P作PD⊥AB,D是垂足.AD与BD都可以根据三角函数用PD表示出来.根据AB的长,得到一个关于PD的方程,解出PD的长.从而判断出这条高速公路会不会穿越保护区.
解答
解:过P作PD⊥AB于D,设PD=x,
在Rt△APD,∠APD=30°,则$AD=x•tan30°=\frac{{\sqrt{3}}}{3}x$.
在Rt△BPD,∠BPD=45°,∴BD=PD=x,
∵AB=100,∴$\frac{{\sqrt{3}}}{3}x+x=100$,
∴$x=({150-50\sqrt{3}})$米>50米.
∴不会穿过保护区.
点评 本题主要考查解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com