精英家教网 > 高中数学 > 题目详情
8.设相交两圆的交点为M和K,引两圆的公切线,切点分别是A、B,证明:∠AMB+∠AKB=180°.

分析 连接MK并延长交AB于C点,则△ACM∽△ACK,可得∠MAC=∠AKC,同理∠MBC=∠BKC,利用三角形的内角和定理,即可证明结论.

解答 证明:连接MK并延长交AB于C点,
则△ACM∽△ACK,∴∠MAC=∠AKC,
同理∠MBC=∠BKC,
∵∠MAB+∠ABM+∠AMB=180°,
∴∠AKC+∠BKC+∠AMB=180°,
∵∠AKC+∠BKC=∠AKB,
∴∠AMB+∠AKB=180°.

点评 本题考查三角形相似的判定与性质,考查三角形的内角和定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线均与圆C:x2+y2-6y+5=0相切,且双曲线的焦距为6,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.按右图所示的程序框图运算,若输入 x=200,则输出 k  的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.P是双曲线$\frac{x^2}{16}-\frac{y^2}{20}=1$上一点,F1,F2分别是双曲线左右焦点,若|PF1|=9,则|PF2|=(  )
A.1B.17C.1或17D.以上答案均不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.
(1)用向量法证明平面A1BD∥平面B1CD1
(2)用向量法证明MN⊥面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,A、B两座城市相距100千米,现计划在这两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°方向上,已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越保护区,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.行如图所示的程序框图,若输入a=390,b=156,则输出a=(  )
A.26B.39C.78D.156

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.韩国首尔医院近20天每天因患中东呼吸综合征而入院就诊的人数依次构成数列{an},己知a1=1,a2=2,且满足an+2-an=2+2(-1)n,n∈N+,则该医院20天内因患中东呼吸综合征就诊的人数共有210.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=$\sqrt{3}$cosx+sinx(x∈R)的图象向右平移m(m>0)个单位长度后,得到函数g(x)=$\sqrt{3}$sinx+cosx(x∈R)的图象,则m的最小值是$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案