分析 (I)利用等差数列的通项公式即可得出;
(II)bn=$\frac{1}{(6n-4)(6n+2)}$=$\frac{1}{12}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂项求和”即可得出.
解答 解:(Ⅰ) 设等差数列{an}的公差为d,
∵a1=2,a4=20,
∴20=2+3d,
解得d=6.
∴an=2+6(n-1)=6n-4.
(II)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(6n-4)(6n+2)}$=$\frac{1}{12}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴数列{an}的前n项和=$\frac{1}{12}$$[(1-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$
=$\frac{1}{12}$$(1-\frac{1}{3n+1})$
=$\frac{n}{12n+4}$.
点评 本题考查了“裂项求和”、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-3<x<2} | B. | {x|-3<x<1} | C. | {x|1<x<2} | D. | {x|2<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com