精英家教网 > 高中数学 > 题目详情
已知平面向量
a
=(
2
2
),
b
=(sin
π
4
x,cos
π
4
x),函数f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)将函数f(x)的图象上的所有的点向左平移1个单位长度,得到函数y=g(x)的图象,若函数y=g(x)+k在(-2,4)上有两个零点,求实数k的取值范围.
(Ⅰ)∵f(x)=
a
b
=
2
sin
π
4
x+
2
cos
π
4
x

=2(
2
2
sin
π
4
x+
2
2
cos
π
4
x)

=2sin(
π
4
x+
π
4
)

T=
π
4
=8.
∴函数f(x)的最小正周期为8.
(Ⅱ)依题意将函数f(x)的图象向左平移1个单位后得到函数
y=g(x)=2sin[
π
4
(x+1)+
π
4
]
=2cos
π
4
x

函数y=g(x)+k在(-2,4)上有两个零点,即函数y=g(x)与y=-k在x∈(-2,4)有两个交点,如图所示.
∴当0<-k<2,即-2<k<0,
∴实数k取值范围为-2<k<0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.
(1)若角时,求该八边形的面积;
(2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则的值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(1,-2)在α终边上,则
6sinα+cosα
3sinα-2cosα
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC的三条边长分别为3、5、7,则△ABC的形状是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,若tanAtanB>1,则△ABC是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC的形状为(  )
A.直角三角形B.锐角三角形
C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(1,cosx),
b
=(
1
3
,sinx),x∈(0,π)
(1)若
a
b
,求
sinx+cosx
sinx-cosx
的值;
(2)若
a
b
,求sinx-cosx的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

cos(-780°)=(  )
A.
3
2
B.-
3
2
C.
1
2
D.-
1
2

查看答案和解析>>

同步练习册答案