精英家教网 > 高中数学 > 题目详情
11.三棱锥S-ABC中,SA⊥面ABC,△ABC为等边三角形,SA=2,AB=3,则三棱锥S-ABC的外接球的表面积为16π.

分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,得球的半径R,然后求解表面积.

解答 解:根据已知中底面△ABC是边长为3的正三角形,SA⊥平面ABC,SA=2,
可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,
∵△ABC是边长为3的正三角形,
∴△ABC的外接圆半径r=$\sqrt{3}$,球心到△ABC的外接圆圆心的距离d=1,
故球的半径R=$\sqrt{3+1}$=2.
三棱锥S-ABC外接球的表面积为:4π×4=16π.
故答案为:16π.

点评 本题考查的知识点是球内接多面体,熟练掌握球的半径R公式是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设不等式组$\left\{\begin{array}{l}{x+2y-5≤0}\\{x≥-1}\\{y≥0}\end{array}\right.$,表示的平面区域为D,点A(3,0),原点O(0,0),在区域D内随机取一点M,则点M满足|MA|≥2|MO|的概率是(  )
A.$\frac{2π}{9}$B.$\frac{π}{6}$C.$\frac{π}{9}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.方程(x+y)$\sqrt{{x}^{2}+{y}^{2}-4}$=0表示的曲线是两条射线和一个圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求与直线5x+3y-1=0垂直,且在两坐标轴上的截距之和为4的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=ex-1,当x>-1时,证明:f(x)>$\frac{2{x}^{2}+x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于非零向量$\overrightarrow{a}$,$\overrightarrow{b}$下列5个命题正确的个数是(  )
(1)若$\overrightarrow{a}$,$\overrightarrow{b}$共线,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则|$\overrightarrow{a}$+$\overrightarrow{b}$|<|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;
(3)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则$\overrightarrow{a}$+$\overrightarrow{b}$同向;
(4)若|$\overrightarrow{a}$+$\overrightarrow{b}$|<|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$不共线;
(5)||$\overrightarrow{a}$|-|$\overrightarrow{b}$||≤|$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某四棱锥的三视图如图所示,该四棱锥外接球的表面积为(  )
A.72πB.100πC.108πD.72$\sqrt{2}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是Q,点A(8,7),则|PA|+|PQ|的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点(5,-3)到直线x+2=0的距离等于(  )
A.7B.5C.3D.2

查看答案和解析>>

同步练习册答案