分析 把球的球心连接,则又可得到一个棱长为2的小正四面体,正四面体的中心到底面的距离是高的$\frac{1}{4}$,且小正四面体的中心和正四面体容器的中心应该是重合的,先求出小正四面体的中心到底面的距离,再求出正四面体的中心到底面的距离,把此距离乘以4可得正四棱锥的高.
解答 解:由题意知,底面放三个球,上再落一个球.
于是把球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为$\frac{2\sqrt{6}}{3}$,
且由正四面体的性质可知:正四面体的中心到底面的距离是高的$\frac{1}{4}$,且小正四面体的中心和正四面体容器的中心应该是重合的,
∴小正四面体的中心到底面的距离是$\frac{2\sqrt{6}}{3}$×$\frac{1}{4}$=$\frac{\sqrt{6}}{6}$,正四面体的中心到底面的距离是$\frac{\sqrt{6}}{6}$+1,
所以可知正四面体的高的最小值为($\frac{\sqrt{6}}{6}$+1)×4=4+$\frac{2\sqrt{6}}{3}$,
故答案为:4+$\frac{2\sqrt{6}}{3}$.
点评 小正四面体是由球心构成的,正四面体的中心到底面的距离等于小正四面体的中心到底面的距离再加上小球的半径.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$π | B. | 3π | C. | $\frac{\sqrt{2}}{3}π$ | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12π | B. | 13π | C. | 14π | D. | 15π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com