精英家教网 > 高中数学 > 题目详情
13.已知在三棱锥P-ABC中,PA=PB=BC=1,AB=$\sqrt{2}$,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一个球面上,则该球的表面积是(  )
A.$\frac{\sqrt{3}}{2}$πB.C.$\frac{\sqrt{2}}{3}π$D.

分析 求出P到平面ABC的距离为$\frac{\sqrt{2}}{2}$,AC为截面圆的直径,AC=$\sqrt{3}$,由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2,求出R,即可求出球的表面积.

解答 解:由题意,AC为截面圆的直径,AC=$\sqrt{3}$,
设球心到平面ABC的距离为d,球的半径为R,
∵PA=PB=1,AB=$\sqrt{2}$,
∴PA⊥PB,
∵平面PAB⊥平面ABC,
∴P到平面ABC的距离为$\frac{\sqrt{2}}{2}$.
由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2
∴d=0,R2=$\frac{3}{4}$,
∴球的表面积为4πR2=3π.
故选:B.

点评 本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设随机变量X服从[1,4]上的均匀分布,则P{2≤x≤3}=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知P为球O球面上的一点,A为OP的中点,若过点A且与OP垂直的平面截球O所得圆的面积为3π,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过原点且与直线$\sqrt{6}x-\sqrt{3}y+1=0$平行的直线l被圆${x^2}+{({y-\sqrt{3}})^2}=7$所截得的弦长为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知过原点O的动直线l与圆C:(x+1)2+y2=4交于A、B两点.
(Ⅰ)若|AB|=$\sqrt{15}$,求直线l的方程;
(Ⅱ)x轴上是否存在定点M(x0,0),使得当l变动时,总有直线MA、MB的斜率之和为0?若存在,求出x0的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.4个半径为1的球两两相切,该几何体的外切正四面体的高是4+$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+\\;b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,等腰梯形ABCD中,AB∥CD,DE⊥AB于E,CF⊥AB于F,且AE=BF=EF=2,DE=CF=2.将△AED和△BFC分别沿DE,CF折起,使A,B两点重合,记为点M,得到一个四棱锥M-CDEF,点G,N,H分别是MC,MD,EF的中点.
(1)求证:GH∥平面DEM;
(2)求证:EM⊥CN;
(3)求直线GH与平面NFC所成角的大小.

查看答案和解析>>

同步练习册答案