| A. | $\frac{\sqrt{3}}{2}$π | B. | 3π | C. | $\frac{\sqrt{2}}{3}π$ | D. | 2π |
分析 求出P到平面ABC的距离为$\frac{\sqrt{2}}{2}$,AC为截面圆的直径,AC=$\sqrt{3}$,由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2,求出R,即可求出球的表面积.
解答 解:由题意,AC为截面圆的直径,AC=$\sqrt{3}$,
设球心到平面ABC的距离为d,球的半径为R,
∵PA=PB=1,AB=$\sqrt{2}$,
∴PA⊥PB,
∵平面PAB⊥平面ABC,
∴P到平面ABC的距离为$\frac{\sqrt{2}}{2}$.
由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2,
∴d=0,R2=$\frac{3}{4}$,
∴球的表面积为4πR2=3π.
故选:B.
点评 本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 支持 | a= | c= | |
| 不支持 | b= | d= | |
| 合计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com