精英家教网 > 高中数学 > 题目详情
7.不相等的两个正数a,b满足alg(ax)=blg(bx),求(ab)lg(abx)

分析 利用取对数法进行化简即可.

解答 解:∵不相等的两个正数a,b满足alg(ax)=blg(bx)
∴两边同时取对数得lgalg(ax)=lgblg(bx)
即lg(ax)lga=lg(bx)lgb,
即(lga+lgx)lga=(lgb+lgx)lgb,
即lg2a+lgalgx=lg2b+lgxlgb,
即(lg2a-lg2b)+lgx(lga-lgb)=0,
即(lga+lgb)(lga-lgb)+lgx(lga-lgb)=0,
即(lga-lgb)(lga+lgb+lgx)=0,
∵a≠b,
∴lga+lgb+lgx=0,即lg(abx)=0,
则abx=1,
则(ab)lg(abx)=(ab)lg1=(ab)0=1.

点评 本题主要考查指数幂和对数的化简,利用取对数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知 S△ABC=$\frac{1}{4}$(b2+c2),求A、B、C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|1≤x<5},B={x|-a<x≤a+3}.若B⊆(A∩B),则a的取值范围是(  )
A.(-$\frac{3}{2}$,-1]B.(-∞,-$\frac{3}{2}$]C.(-∞,-1]D.(-$\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求9${\;}^{lo{g}_{3}2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.根据图象写出函数y=Asin(ωx+φ)(A>0,ω>0,|φ<$\frac{π}{2}$|)的解析式,并求其图象向右平移$\frac{π}{4}$个单位,再将其横坐标压缩为原来的$\frac{1}{2}$后所得的函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\left\{\begin{array}{l}{x-3}&{x≥10}\\{f[f(x+5)]}&{x<10}\end{array}\right.$其中x∈N+,则f(5)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|1-2k<x<5-4k},B={x|-$\frac{4}{3}$k<x<k},若A?B,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(ωx+ϕ)(ω>0)的图象向右平移$\frac{π}{6}$个单位可得到一个偶函数的图象,f(x)≤|f($\frac{π}{3}$)|且f($\frac{π}{12}$)=0,$\frac{π}{12}$是离横坐标为$\frac{π}{3}$的顶点最近的一个零点,则ϕ的可能取值是(  )
A.-$\frac{π}{6}$B.$\frac{π}{12}$C.-$\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a2+c2-b2=ac,又log4sinA+log4sinC=-1,且△ABC的面积S=$\sqrt{3}$,求三边a,b,c的长及三个内角A,B,C的度数.

查看答案和解析>>

同步练习册答案