精英家教网 > 高中数学 > 题目详情
F(x)=(x+
1
x
)f(x)(x≠0)
是偶函数,且f(x)不恒等于零,则f(x)(  )
分析:通过已知函数的奇偶性,利用奇偶性的定义判断f(x)的奇偶性即可.
解答:解:因为F(x)=(x+
1
x
)f(x)(x≠0)
是偶函数,
所以F(-x)=(-x-
1
x
)f(-x)=(x+
1
x
)f(x)=F(x)

所以f(-x)=-f(x),所以函数f(x)是奇函数.
故选A.
点评:本题考查函数的奇偶性的判断,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1x

(1)求函数y=f(x)的定义域;
(2)判断函数y=f(x)的奇偶性并证明;
(3)判断函数y=f(x)在区间(1,+∞)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-
1x
|

(1)证明f(x)的奇偶性;
(2)当x>0时,试写出f(x)的单调区间并用定义证明;
(3)试在所给的坐标系中作出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )
A.?x∈R且x≠0有f(-x)=(-x)+
1
-x
=-(x+
1
x
)=-f(x),∴f(x)是奇函数
B.?x∈R且x≠0有f(x)+f(-x)=x+
1
x
+(-x)+(-
1
x
)=0,∴f(x)=-f(-x),∴f(x)是奇函数
C.?x∈R且x≠0,∵f(x)≠0,∴
f(-x)
f(x)
=
-x-
1
x
x+
1
x
=-1,∴f(-x)=-f(x),∴f(x)是奇函数
D.取x=-1,f(-1)=-1+
1
-1
=-2,又f(1)=1+
1
1
=2

查看答案和解析>>

同步练习册答案