精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2]上有且只有一个零点,求实数a的取值范围.
(I)函数定义域为x>0,且f′(x)=2x-(a+2)+
a
x
=
(2x-a)(x-1)
a
…(2分)
①当a≤0,即
a
2
≤0
时,令f'(x)<0,得0<x<1,函数f(x)的单调递减区间为(0,1),
令f'(x)>0,得x>1,函数f(x)的单调递增区间为(1,+∞).
②当0<
a
2
<1
,即0<a<2时,令f'(x)>0,得0<x<
a
2
或x>1,
函数f(x)的单调递增区间为(0,
a
2
)
,(1,+∞).
令f'(x)<0,得
a
2
<x<1
,函数f(x)的单调递减区间为(
a
2
,1)

③当
a
2
=1
,即a=2时,f'(x)≥0恒成立,函数f(x)的单调递增区间为(0,+∞).…(7分)
(Ⅱ)①当a≤0时,由(Ⅰ)可知,函数f(x)的单调递减区间为(0,1),f(x)在(1,2]单调递增.
所以f(x)在(0,2]上的最小值为f(1)=a+1,
由于f(
1
e2
)=
1
e4
-
2
e2
-
a
e2
+2=(
1
e2
-1)2-
a
e2
+1>0

要使f(x)在(0,2]上有且只有一个零点,
需满足f(1)=0或
f(1)<0
f(2)<0
解得a=-1或a<-
2
ln2

②当0<a≤2时,由(Ⅰ)可知,
(ⅰ)当a=2时,函数f(x)在(0,2]上单调递增;
f(e-4)=
1
e8
-
4
e4
-2<0,f(2)=2+2ln2>0
,所以f(x)在(0,2]上有且只有一个零点.
(ⅱ)当0<a<2时,函数f(x)在(
a
2
,1)
上单调递减,在(1,2]上单调递增;
又因为f(1)=a+1>0,所以当x∈(
a
2
,2]
时,总有f(x)>0.
因为e -
2a+2
a
<1<a+2,
所以f(e -
2a+2
a
)=e -
2a+2
a
[e -
2a+2
a
-(a+2)]+(alne -
2a+2
a
+2a+2)<0.
所以在区间(0,
a
2
)内必有零点.又因为f(x)在(0,
a
2
)内单调递增,
从而当0<a≤2时,f(x)在(0,2]上有且只有一个零点.
综上所述,0<a≤2或a<-
2
ln2
或a=-1时,f(x)在(0,2]上有且只有一个零点.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案