精英家教网 > 高中数学 > 题目详情

函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f'(x)=0的两根为x1,x2,则|x1-x2|的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:先求出f′(x)=3ax2+2bx+c,可得 == ++,由f′0)•f′(1)>0,
解得-2<<-1,利用二次函数的性质求出的范围,即可求得|x1-x2|的取值范围.
解答:由题意得:f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,
∴x1+x2=-,x1•x2=.∴|x1-x2|2 =-4x1x2
=-4x1•x2 =
∵a+b+c=0,∴c=-a-b,
== ++
∵f′0)•f′(1)>0,f(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,
即2a2+3ab+b2<0,∵a≠0,两边同除以a2得:+3 +2<0,解得-2<<-1.
由二次函数的性质可得,当=-时,有最小值为
趋于-1时, 趋于 ,故
故|x1-x2|∈
故选A.
点评:本题考查根与系数的关系的灵活运用,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′.
②若函数h(x)=cos4x-sin4x,则h′(
π12
)=1

③若函数g(x)=(x-1)(x-2)…(x-2009)(x-2010),则g′(2010)=2009!.
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)=ax3-6ax2+b(x∈[-1,2])的最大值为3,最小值为-29,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
 

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax3-2x2+a2x在x=1处有极小值,则实数a等于
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下表为函数f(x)=ax3+cx+d部分自变量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根据表中数据,研究该函数的一些性质:
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在[0.55,0.6]上是否存在零点,并说明理由.

查看答案和解析>>

同步练习册答案