精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:e2x2-
52
x>(x+1)lnx
分析:(1)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围.
(2)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3.
(3)令F(x)=e2x-lnx结合(2)中知F(x)的最小值为3,再令?(x)=
lnx
x
+
5
2
并求导,再由导函数在0<x≤e大于等于0可判断出函数?(x)在(0,e]上单调递增,从而可求得最大值也为3,即有e2x-lnx>
lnx
x
+
5
2
成立,即e2x2-
5
2
x>(x+1)lnx
成立.
解答:解:(1)f(x)=2x+a-
1
x
=
2x2+ax-1
x
≤0
在[1,2]上恒成立,
令h(x)=2x2+ax-1,有
h(1)≤0
h(2)≤0
a≤-1
a≤-
7
2

a≤-
7
2

(2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,g(x)=a-
1
x
=
ax-1
x

①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,a=
4
e
(舍去),
②当0<
1
a
<e
时,g(x)在(0,
1
a
)
上单调递减,在(
1
a
,e]
上单调递增
g(x)min=g(
1
a
)=1+lna=3
,a=e2,满足条件.
③当
1
a
≥e
时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,a=
4
e
(舍去),
综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3.
(3)令F(x)=e2x-lnx,由(2)知,F(x)min=3.
?(x)=
lnx
x
+
5
2
?(x)=
1-lnx
x2

当0<x≤e时,?'(x)≥0,φ(x)在(0,e]上单调递增
?(x)max=?(e)=
1
e
+
5
2
1
2
+
5
2
=3

e2x-lnx>
lnx
x
+
5
2
,即e2x2-
5
2
x
>(x+1)lnx.
点评:本题主要考查导数的运算和函数的单调性与其导函数的正负之间的关系,当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案