精英家教网 > 高中数学 > 题目详情
1.执行如图所示的程序框图,输出的结果是(  )
A.56B.36C.54D.64

分析 根据框图的流程模拟运行程序,直到满足条件c>20,输出S的值即可得解.

解答 解:模拟程序的运行,可得:
第1次循环,c=2,S=4,c<20,a=1,b=2,
第2次循环,c=3,S=7,c<20,a=2,b=3,
第3次循环,c=5,S=12,c<20,a=3,b=5,
第4次循环,c=8,S=20,c<20,a=5,b=8,
第5次循环,c=13,S=33,c<20,a=8,b=13,
第6次循环,c=21,S=54,c>20,退出循环,输出S的值为54.
故选:C.

点评 本题考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,则实数k的取值范围为k≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6,}.则直线l1与l2的交点位于第一象限的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a∈R,则“a=4是“直线l1:ax+8y-3=0与直线l2:2x+ay-a=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在R上的函数f(x)=2x-$\frac{1}{{2}^{|x|}}$.
(1)若f(x)=$\frac{3}{2}$,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设两个函数f(x)和g(x),其中f(x)是三次函数,且对任意的实数x,都有f′(x)+2f′(-x)=-9x2-4x-3,f(0)=1,g(x)=$\frac{m}{x}$+xlnx(m≥1).
(1)求函数f(x)的极值;
(2)证明:对于任意的x1,x2∈(0,+∞)都有f(x1)≤g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数y=x2-2x-1在区间(-∞,2a-2]上是减函数,则实数a的取值范围是(  )
A.$(-∞,\frac{3}{2}]$B.$(-∞,-\frac{3}{2}]$C.$[\frac{3}{2},+∞)$D.$[-\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,则实数a的取值范围是$(1+\frac{1}{e},e]$.

查看答案和解析>>

同步练习册答案