精英家教网 > 高中数学 > 题目详情
19.如图,在平行四边形OABC中,过点C(1,3)做CD⊥AB,垂足为点D,试求CD所在直线的一般式方程.

分析 根据原点坐标和已知的C点坐标,求出直线OC的斜率;根据平行四边形的两条对边平行得到AB平行于OC,又CD垂直与AB,所以CD垂直与OC,由(1)求出的直线OC的斜率,根据两直线垂直时斜率乘积为-1,求出CD所在直线的斜率,然后根据求出的斜率和点C的坐标写出直线CD的方程即可.

解答 解:因为点O(0,0),点C(1,3),
所以OC所在直线的斜率为${k_{OC}}=\frac{3-0}{1-0}=3$.(2分),
在平行四边形OABC中,AB∥OC,因为CD⊥AB,所以CD⊥OC.
所以 CD所在直线的斜率为${k_{CD}}=-\frac{1}{3}$.(6分)
所以CD所在直线方程为$y-3=-\frac{1}{3}(x-1)$,即x+3y-10=0.(10分)

点评 此题考查学生会根据两点的坐标求出过两点直线方程的斜率,掌握两直线平行时斜率所满足的条件,会根据一点和斜率写出直线的点斜式方程,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx+x2-ax+2(a∈R)有两个不同的零点x1,x2
(1)求实数a的取值范围.
(2)求证:x1+x2>2.
(3)求证:x1•x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求以椭圆$\frac{x^2}{8}+\frac{y^2}{5}=1$的焦点为顶点,以椭圆的顶点为焦点的双曲线方程
(2)求此双曲线方程的实半轴长,虚半轴长,离心率,渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

$\overline x$$\overline y$$\overline w$${\sum_{i=1}^8{({x_i}-\overline x)}^2}$${\sum_{i=1}^8{({w_i}-\overline w)}^2}$$\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)$$\sum_{i=1}^8{({w_i}-\overline w)}({y_i}-\overline y)$
46.656.36.8289.81.61469108.8
表中wi=$\sqrt{x_i}$,$\overline w=\frac{1}{8}\sum_{i=1}^8{w_i}$
(1)若根据散点图用y=c+d$\sqrt{x}$表示年销售量y关于年宣传费x的回归方程,试根据表中数据,求c,d的值;
(2)已知这种产品的年利率z与x、y的关系为z=0.2y-x,根据(1)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.利用“长方体ABCD-A1B1C1D1中,四面体A1BC1D”的特点,求得四面体PMNR(其中PM=NR=$\sqrt{10}$,PN=MR=$\sqrt{13}$,MN=PR=$\sqrt{5}$)的外接球的表面积为(  )
A.14πB.16πC.13πD.15π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面内有A(-2,1),B(1,4),使$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$成立的点C坐标为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中:
(1)a=4,A=30°,若△ABC唯一确定,则0<b≤4.
(2)若点(1,1)在圆x2+y2+mx-y+4=0外,则m的取值范围是(-5,+∞);
(3)若曲线$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示双曲线,则k的取值范围是(1,+∞]∪(-∞,-4];
(4)将函数y=cos(2x-$\frac{π}{3}$)(x∈R)的图象向左平移$\frac{π}{3}$个单位,得到函数y=cos2x的图象.
(5)已知双曲线方程为x2-$\frac{{y}^{2}}{2}$=1,则过点P(1,1)可以作一条直线l与双曲线交于A,B两点,使点P是线段AB的中点.正确的是(2),(5)(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知m∈R,函数f(x)=$\left\{\begin{array}{l}|2x+1|,x<1\\ ln(x-1),x>1\end{array}$,g(x)=x2-2x+2m2-1,若函数y=f(g(x))-m有6个零点则实数m的取值范围是$(0,\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)在线段BC1上是否存在点D,使得AD⊥A1B?若存在,求出$\frac{BD}{B{C}_{1}}$的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案