精英家教网 > 高中数学 > 题目详情

【题目】已知,其中.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若恒成立,求的最大值.

【答案】(Ⅰ)上单调递减,在上单调递增;(Ⅱ).

【解析】

(Ⅰ)求函数导数,利用导数可研究函数的单调性;

(Ⅱ)由条件可得 上恒成立, 求导得,分别讨论,三种情况,研究的最小值的取值情况,从而即可得解.

(Ⅰ)时,,定义域是全体实数,求导得

,所以上单调递减,在上单调递增

(Ⅱ)令 上恒成立,则 上恒成立

求导得.

,显然可以任意小,不符合题意.

,则最大也只能取0.

时,令

于是上单调递减,在单调递增,在取唯一的极小值也是最小值

,则

.

所以上单调递增,在单调递减,

取唯一极大值也是最大值,此时,所以的最大值等于.

备注一:结合图象,指数函数在直线的上方,斜率显然,再讨论的情况.

备注二:考虑到 上恒成立,令即得.取

证明上恒成立也给满分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数则关于的方程的实数解最多有

A. 4个 B. 7个 C. 10个 D. 12个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)试讨论函数的极值情况;

(2)证明:当时,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级, 一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )

①1月至8月空气合格天数超过20天的月份有5个

②第二季度与第一季度相比,空气达标天数的比重下降了

③8月是空气质量最好的一个月

④6月份的空气质量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,,.

(Ⅰ)求证:

(Ⅱ)若与平面所成的角为,点的中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.

(Ⅰ)求证:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动直线)与圆交于点,则弦最短为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案