精英家教网 > 高中数学 > 题目详情

【题目】在四个函数y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π为周期,在 上单调递增的偶函数是(
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|

【答案】D
【解析】解:由于函数y=sin|x|不具有周期性,故排除A;
由于函数y=cos|x|在 上单调递减,故排除B;
由于函数y= 上单调递减,故排除C;
由于函数y=lg|sinx|的周期为π,且是在 上单调递增的偶函数,故满足条件,
故选:D.
【考点精析】根据题目的已知条件,利用函数奇偶性的性质的相关知识可以得到问题的答案,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A. 选修4-1:几何证明选讲

如图,已知为圆的一条弦,点为弧的中点,过点任作两条弦分别交于点.

求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)a的值为多少时,f(x)是偶函数?
(2)若对任意x∈[0,+∞),都有f(x)>0,求实数a的取值范围.
(3)若f(x)在区间[0,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . 

(Ⅰ)当时,求函数的极值;

(Ⅱ)当时,讨论函数单调性;

(Ⅲ)是否存在实数,对任意的 ,且,有恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质监部门从某超市销售的甲、乙两种食用油中分别各随机抽取100桶检测某项质量指标,由检测结果得到如下的频率分布直方图:

(Ⅰ)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,试比较的大小(只要求写出答案);

(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一桶的质量指标大于20;

(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55,38.45)的桶数,求的数学期望.

注:①同一组数据用该区问的中点值作代表,计算得

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若对任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,则实数m的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体中,矩形所在平面与梯形所在平面垂直,且 的中点.

(1)证明: 平面

(2)证明: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把下列各命题作为原命题,分别写出它们的逆命题、否命题和逆否命题.

(1)αβ,则sin αsin β

(2)若对角线相等,则梯形为等腰梯形;

(3)已知abcd都是实数,若abcd,则acbd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于维向量,若对任意均有,则称向量. 对于两个向量定义.

(1)若, 求的值;

(2)现有一个向量序列: 且满足: ,求证:该序列中不存在向量.

(3) 现有一个向量序列: 且满足: ,若存在正整数使得向量序列中的项,求出所有的.

查看答案和解析>>

同步练习册答案