【题目】在四个函数y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π为周期,在 上单调递增的偶函数是( )
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)a的值为多少时,f(x)是偶函数?
(2)若对任意x∈[0,+∞),都有f(x)>0,求实数a的取值范围.
(3)若f(x)在区间[0,+∞)上单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(Ⅰ)当时,求函数的极值;
(Ⅱ)当时,讨论函数单调性;
(Ⅲ)是否存在实数,对任意的, ,且,有恒成立?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质监部门从某超市销售的甲、乙两种食用油中分别各随机抽取100桶检测某项质量指标,由检测结果得到如下的频率分布直方图:
(Ⅰ)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,,试比较,的大小(只要求写出答案);
(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一桶的质量指标大于20;
(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数,近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55,38.45)的桶数,求的数学期望.
注:①同一组数据用该区问的中点值作代表,计算得
②若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若对任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,则实数m的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把下列各命题作为原命题,分别写出它们的逆命题、否命题和逆否命题.
(1)若α=β,则sin α=sin β;
(2)若对角线相等,则梯形为等腰梯形;
(3)已知a,b,c,d都是实数,若a=b,c=d,则a+c=b+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于维向量,若对任意均有或,则称为维向量. 对于两个维向量定义.
(1)若, 求的值;
(2)现有一个维向量序列: 若且满足: ,求证:该序列中不存在维向量.
(3) 现有一个维向量序列: 若且满足: ,若存在正整数使得为维向量序列中的项,求出所有的.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com