精英家教网 > 高中数学 > 题目详情
5.在(2x+a)5的展开式中,含x4项的系数等于160,则${∫}_{0}^{a}$(ex+2x)dx等于(  )
A.e2+3B.e2+4C.e+1D.e+2

分析 先二项展开式的通项公式求出a的值,根据积分公式求出即可.

解答 解:由题意可得C5124a=160,
解得a=2,
∴${∫}_{0}^{2}$(ex+2x)dx=(ex+x2)|${\;}_{0}^{2}$=e2+3,
故选:A

点评 本题主要考查二项展开式的应用以及微积分定理的计算,要求熟练掌握相应的计算公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)设定点$B(-\frac{9}{5},0)$,问:对于圆C上任一点P,$\frac{PB}{PA}$是否为一常数?若是,求出这个常数值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=cos(2x+φ)(-π≤φ≤π)的图象向右平移$\frac{π}{2}$个单位后与函数$y=sin(2x+\frac{π}{3})$的图象重合,此时φ=(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列结论:①函数y=sin$\frac{x}{2}+\sqrt{3}cos\frac{x}{2}$的图象的一条对称轴方程是x=$\frac{π}{3}$; ②△ABC中,若b=2asinB,则A等于30°;③在△ABC中,若∠A=120°,AB=5,BC=7,则△ABC的面积S=$\frac{{15\sqrt{3}}}{4}$;④sin70°cos40°cos60°cos80°=$\frac{1}{8}$,其中正确的是(  )
A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若sin(${\frac{π}{6}$-α})=$\frac{1}{3}$,则2cos2(${\frac{π}{6}$+$\frac{α}{2}$)-1等于(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.-$\frac{7}{9}$D.-$\frac{17}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\frac{|x-1|}{x+2}$与g(x)=k(x-1)3的图象恰好有两个公共点,则实数k的取值范围是(  )
A.(-∞,-$\frac{1}{4}$)B.(0,+∞)C.(-∞,-$\frac{1}{4}$)∪(0,+∞)D.(-$\frac{1}{4}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数$f(x)=\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}\right.$称为狄利克雷函数,关于函数f(x)有以下四个命题:
①f(f(x))=1;      
②函数f(x)是奇函数
③任意一个非零无理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中真命题的序号为①④.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知无穷等比数列{an}中,${a_1}=\frac{3}{2}$,${a_2}{a_3}=-\frac{1}{12}$,则$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f'(x),且有2f(x)+xf'(x)>x2,则不等式(x+2017)2f(x+2017)-4f(-2)>0的解集为(  )
A.(-∞,-2015)B.(-∞,-2019)C.(-2015,0)D.(-2019,0)

查看答案和解析>>

同步练习册答案