精英家教网 > 高中数学 > 题目详情
15.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)设定点$B(-\frac{9}{5},0)$,问:对于圆C上任一点P,$\frac{PB}{PA}$是否为一常数?若是,求出这个常数值;若不是,请说明理由.

分析 (1)根据所求直线与直线l垂直,设所求直线方程为y=-2x+b,即2x+y-b=0,利用直线与圆相切,距离d=r可得b的值,可得直线方程.
(2)设出P点,利用两点之间的距离公式,求解BP和PA,化简可得结论.

解答 解:(1)由题意,所求直线与直线l垂直,
设所求直线方程为y=-2x+b,即2x+y-b=0,
∵直线与圆相切,∴$\frac{|-b|}{{\sqrt{{2^2}+{1^2}}}}=3$,得$b=±3\sqrt{5}$,
∴所求直线方程为$y=-2x±3\sqrt{5}$.
(2)圆C上任一点为P,设P(x,y),则y2=9-x2
∴$\frac{{P{B^2}}}{{P{A^2}}}=\frac{{{{(x+\frac{9}{5})}^2}+{y^2}}}{{{{(x+5)}^2}+{y^2}}}=\frac{{{x^2}+\frac{18}{5}x+\frac{81}{25}+9-{x^2}}}{{{x^2}+10x+25+9-{x^2}}}=\frac{{\frac{18}{25}(5x+17)}}{2(5x+17)}=\frac{9}{25}$,
从而$\frac{PB}{PA}=\frac{3}{5}$为常数.

点评 本题主要考查直线和圆的位置关系的运用,根据直线和圆相切距离d=r是解决本题的关键.同时考查了两点之间的距离公式的运用和计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知正四棱锥的底面边长是2cm,侧棱长是$\sqrt{3}$cm,则该正四棱锥的体积为$\frac{4}{3}c{m}^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A,B,C对应的边分别为a,b,c,已知b=$\sqrt{2}$c,sinA+$\sqrt{2}$sinC=2sinB,则sinA=$\frac{\sqrt{14}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)计算:$|{1+\sqrt{2}i}|+{({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^3}$;
(2)已知2i-3是关于x的方程2x2+px+q=0的一个根,求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在直角坐标系中(O为坐标原点),$\overrightarrow{OA}$=(2,5),$\overrightarrow{OB}$=(3,1),$\overrightarrow{OC}$=(x,3).
(1)若A、B、C共线,求x的值;
(2)当x=6时,直线OC上存在点M,且$\overrightarrow{MA}$⊥$\overrightarrow{MB}$,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设甲袋装有m个白球,n个黑球,乙袋装有m个黑球,n个白球,从甲、乙袋中各摸一球,设事件A:“两球同色”,事件B:“两球异色”,试比较P(A)与P(B)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形BCDE是直角梯形,CD∥BE,CD丄BC,CD=$\frac{1}{2}$BE=2,平面BCDE丄平面ABC,又已知△ABC为等腰直角三角形,AB=AC=4,M是BC的中点.
(I)求证:AM丄ME;
(II)求四面体ADME的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°
⑤sin2(-25°)+cos255°-sin(-25°)cos55°(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为一三角恒等式,并证明你的结论.
(参考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ?sinαsinβsin2α=2sinαcosα,cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(2x+a)5的展开式中,含x4项的系数等于160,则${∫}_{0}^{a}$(ex+2x)dx等于(  )
A.e2+3B.e2+4C.e+1D.e+2

查看答案和解析>>

同步练习册答案