精英家教网 > 高中数学 > 题目详情
7.如图,四边形BCDE是直角梯形,CD∥BE,CD丄BC,CD=$\frac{1}{2}$BE=2,平面BCDE丄平面ABC,又已知△ABC为等腰直角三角形,AB=AC=4,M是BC的中点.
(I)求证:AM丄ME;
(II)求四面体ADME的体积.

分析 (Ⅰ)由AB=AC,M是BC的中点,可得AM⊥BC,再由面面垂直的性质可得AM⊥平面BCDE,进一步得到AM⊥ME;
(Ⅱ)由已知可得△BME的面积,得到△DCM的面积,求出梯形BCDE的面积,作差可得△DME的面积,结合(Ⅰ)知,AM⊥平面BCDE,即三棱锥A-DME的高AM=$2\sqrt{2}$.代入棱锥体积公式得答案.

解答 (Ⅰ)证明:∵AB=AC,M是BC的中点,
∴AM⊥BC,
∵平面BCDE⊥平面ABC,而平面BCDE∩平面ABC=BC,AM?平面ABC,
∴AM⊥平面BCDE,又EM?平面BCDE,
∴AM⊥ME;
(Ⅱ)解:∵BE∥CD,CD⊥BC,且四边形BCDE是直角梯形,
∴${S}_{△BME}=\frac{1}{2}•BE•BM=\frac{1}{2}×4×2\sqrt{2}=4\sqrt{2}$.
${S}_{△DCM}=\frac{1}{2}{S}_{BME}=2\sqrt{2}$.
而梯形BCDE的面积${S}_{梯形BCDE}=\frac{1}{2}(4+2)×4\sqrt{2}=12\sqrt{2}$.
∴${S}_{△DME}={S}_{梯形BCDE}-{S}_{△DCM}-{S}_{△BEM}=6\sqrt{2}$.
由(Ⅰ)知,AM⊥平面BCDE,即三棱锥A-DME的高AM=$2\sqrt{2}$.
∴${V}_{A-DME}=\frac{1}{3}{S}_{△DME}•AM=\frac{1}{3}×6\sqrt{2}×2\sqrt{2}$=8.

点评 本题考查直线与平面垂直的性质,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在平行六面体ABCD-A1B1C1D1中,AB=2,AD=3,AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,则对角线AC1的长为$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量X服从正态分布N(100,532),P(X<110)=0.84,则P(90<X≤100)=(  )
A.0.16B.0.34C.0.42D.0.84

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)设定点$B(-\frac{9}{5},0)$,问:对于圆C上任一点P,$\frac{PB}{PA}$是否为一常数?若是,求出这个常数值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列关于函数、函数的定义域、函数的值域、函数的对应法则的结构图正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=x2-ln x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设b,c分别是先后抛掷一枚骰子得到的点数.
(1)设A={x|x2-bx+2c<0,x∈R},求A≠∅的概率;
(2)设随机变量ξ=|b-c|,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=cos(2x+φ)(-π≤φ≤π)的图象向右平移$\frac{π}{2}$个单位后与函数$y=sin(2x+\frac{π}{3})$的图象重合,此时φ=(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数$f(x)=\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}\right.$称为狄利克雷函数,关于函数f(x)有以下四个命题:
①f(f(x))=1;      
②函数f(x)是奇函数
③任意一个非零无理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中真命题的序号为①④.(写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案