精英家教网 > 高中数学 > 题目详情
2.下列关于函数、函数的定义域、函数的值域、函数的对应法则的结构图正确的是(  )
A.B.
C.D.

分析 根据函数的三个要素是函数的定义域、函数的值域和函数的对应法则,得到函数、函数的定义域、函数的值域、函数的对应法则这四个概念之间的关系,函数包含这三个子概念.

解答 解:根据函数的三个要素是函数的定义域、函数的值域和函数的对应法则
得到函数、函数的定义域、函数的值域、函数的对应法则
这四个概念之间的关系是函数包含这三个概念,
故选A.

点评 本题考查结构图,这种问题解答时一是要能够读懂题目中出现的图形,二是理解图形中所给出的名词之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,且a=2bsinA.
(1)求∠B的大小;
(2)若a=3$\sqrt{3}$,c=5,求三角形ABC的面积和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在直角坐标系中(O为坐标原点),$\overrightarrow{OA}$=(2,5),$\overrightarrow{OB}$=(3,1),$\overrightarrow{OC}$=(x,3).
(1)若A、B、C共线,求x的值;
(2)当x=6时,直线OC上存在点M,且$\overrightarrow{MA}$⊥$\overrightarrow{MB}$,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)双曲线a≥1的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{15}$C.4D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形BCDE是直角梯形,CD∥BE,CD丄BC,CD=$\frac{1}{2}$BE=2,平面BCDE丄平面ABC,又已知△ABC为等腰直角三角形,AB=AC=4,M是BC的中点.
(I)求证:AM丄ME;
(II)求四面体ADME的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义A*B,B*A,C*D,D*A的运算分别对应图2中的(1)(2)(3)(4),那么,图1中(A)(B)可能是下列的运算的结果(  )
A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x∈(-∞,2)}\\{\frac{1}{2}f(x-2),x∈[2,+∞)}\end{array}\right.$,则函数F(x)=xf(x)-1的零点的个数为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sin(π-2x)-2cos2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案