精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x∈(-∞,2)}\\{\frac{1}{2}f(x-2),x∈[2,+∞)}\end{array}\right.$,则函数F(x)=xf(x)-1的零点的个数为(  )
A.7B.6C.5D.4

分析 由F(x)=0得f(x)=$\frac{1}{x}$,然后分别作出函数f(x)与y=$\frac{1}{x}$的图象,利用数形结合即可得到函数零点的个数.

解答 解:由F(x)=xf(x)-1=0得,f(x)=$\frac{1}{x}$,然后分别作出函数f(x)与y=g(x)=$\frac{1}{x}$的图象如图:
∵当x≥2时,f(x)=$\frac{1}{2}$f(x-2),
∴f(1)=1,g(1)=1,
f(3)=$\frac{1}{2}$f(1)=$\frac{1}{2}$,g(3)=$\frac{1}{3}$,
f(5)=$\frac{1}{2}$f(3)=$\frac{1}{4}$,g(5)=$\frac{1}{5}$,
f(7)=$\frac{1}{2}$f(5)=$\frac{1}{8}$,g(7)=$\frac{1}{7}$,
∴当x>7时,f(x)<$\frac{1}{x}$,
由图象可知两个图象的交点个数为6个.
故选:C.

点评 本题主要考查函数零点个数的判断,根据方程和函数之间的关系,转化为两个函数图象的交点问题是解决本题的关键,利用数形结合是解决本题的基本思想.本题难度较大,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知 b=a3+$\frac{1}{1+a}$,a∈[0,1].  证明:
(1)b≥1-a+a2
(2)$\frac{3}{4}$<b≤$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列关于函数、函数的定义域、函数的值域、函数的对应法则的结构图正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设b,c分别是先后抛掷一枚骰子得到的点数.
(1)设A={x|x2-bx+2c<0,x∈R},求A≠∅的概率;
(2)设随机变量ξ=|b-c|,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:
单价x(元)88.28.48.68.89
销量y(件)908483m7568
根据最小二乘法建立的回归直线方程为$\widehaty=-20x+250$,
(1)试求表格中m的值;
(2)预计在今后的销售中,销量与单价仍然服从建立的回归方程,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=cos(2x+φ)(-π≤φ≤π)的图象向右平移$\frac{π}{2}$个单位后与函数$y=sin(2x+\frac{π}{3})$的图象重合,此时φ=(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.复数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1.1]}\\{\frac{1}{x},x∈(1,+∞)}\end{array}\right.$,则$\int_0^2{f(x)}$dx=$\frac{π}{4}$+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若sin(${\frac{π}{6}$-α})=$\frac{1}{3}$,则2cos2(${\frac{π}{6}$+$\frac{α}{2}$)-1等于(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.-$\frac{7}{9}$D.-$\frac{17}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-1+a,函数g(x)═ax+lnx,α∈R.
(1)求函数y=g(x)的单调区间;
(2)若不等式f(x)≥g(x)+1在[1,+∞)上恒成立,求实数a的取值范围;
(3)若x∈(1,+∞),求证:不等式:ex-1-2lnx>-x+1.

查看答案和解析>>

同步练习册答案