精英家教网 > 高中数学 > 题目详情
3.复数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1.1]}\\{\frac{1}{x},x∈(1,+∞)}\end{array}\right.$,则$\int_0^2{f(x)}$dx=$\frac{π}{4}$+ln2.

分析 利用定积分的可加性将所求写成两个定积分相加的形式,然后计算定积分.

解答 解:由已知${∫}_{0}^{1}\sqrt{1-{x}^{2}}dx+{∫}_{1}^{2}\frac{1}{x}dx$=$\frac{1}{4}π×{1}^{2}+lnx{|}_{1}^{2}$=$\frac{π}{4}$+ln2;
故答案为:$\frac{π}{4}+ln2$.

点评 本题考查了定积分的计算;利用定积分的运算法则将所求转化为两个定积分的和的形式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义A*B,B*A,C*D,D*A的运算分别对应图2中的(1)(2)(3)(4),那么,图1中(A)(B)可能是下列的运算的结果(  )
A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x∈(-∞,2)}\\{\frac{1}{2}f(x-2),x∈[2,+∞)}\end{array}\right.$,则函数F(x)=xf(x)-1的零点的个数为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线l过点(1,0)且与曲线y=-$\frac{1}{{e}^{x}}$相切,设其倾斜角为α,则α=(  )
A.30°B.60°C.45°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.f(x)=ex-ax(a>1),试讨论f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线C与x2-2y2=2有公共渐近线,且过点M(2,-2),求C的方程,并写出其离心率与渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sin(π-2x)-2cos2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.-3290°角是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步练习册答案