| A. | 30° | B. | 60° | C. | 45° | D. | 135° |
分析 设出切点坐标,求出函数的导数,利用导数的几何意义求出切线的斜率,由点斜式求出切线方程,代入点(1,0),解方程即可得到结论.
解答 解:∵y=-$\frac{1}{{e}^{x}}$,
∴函数的导数为y′=$\frac{1}{{e}^{x}}$,
设切点坐标为(x0,-$\frac{1}{{e}^{{x}_{0}}}$),
∴切线方程为y+$\frac{1}{{e}^{{x}_{0}}}$=$\frac{1}{{e}^{{x}_{0}}}$(x-x0),
∵切线l过点(1,0),
∴$\frac{1}{{e}^{{x}_{0}}}$=$\frac{1}{{e}^{{x}_{0}}}$(1-x0),
解得x0=0,
∴$\frac{1}{{e}^{{x}_{0}}}$=1=tanα,
∴α=45°,
故选C.
点评 本题主要考查导数的几何意义,考查直线方程的形式,求函数的导数是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(件) | 90 | 84 | 83 | m | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{\sqrt{e}}{e}$-8] | B. | [$\frac{\sqrt{e}}{e}$-8,+∞) | C. | [$\sqrt{2}$,e) | D. | (-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com