分析 (1)由三角函数恒等变换的应用化简可得f(x)=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$),利用正弦函数的性质可求值域,进而可求f(x)的周期为8,利用周期公式即可得解ω的值.
(2)由三角函数平移变换的规律可得g(x)=2$\sqrt{3}$sin(2x+$\frac{π}{3}$),由x∈[-$\frac{π}{2}$,0],可得2x+$\frac{π}{3}$∈[-$\frac{2π}{3}$,$\frac{π}{3}$],进而根据正弦函数的图象和性质可求g(x)的最小值.
解答 (本题满分为10分)
解:(1)∵f(x)=6cos2$\frac{ωx}{2}$+2$\sqrt{3}$sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$-3=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$),….(1分)
∴f(x)的值域为[-2$\sqrt{3}$,2$\sqrt{3}$].
∵正三角形的高为2$\sqrt{3}$,
∴BC=4,
∴f(x)的周期为8,
∴ω=$\frac{π}{4}$.….(6分)
(2)由题得g(x)=2$\sqrt{3}$sin(2x+$\frac{π}{3}$),
∵x∈[-$\frac{π}{2}$,0],可得:2x+$\frac{π}{3}$∈[-$\frac{2π}{3}$,$\frac{π}{3}$],
∴g(x)的最小值为-2$\sqrt{3}$.….(10分)
点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,着重考查三角函数的化简求值与正弦函数的性质,考查分析转化与运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{15}$ | C. | 4 | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B*D,A*D | B. | B*D,A*C | C. | B*C,A*D | D. | C*D,A*D |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 45° | D. | 135° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,1)∪(1,+∞) | C. | (1,+∞) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com