分析 由已知利用正弦定理可求a=$\sqrt{2}$c,进而利用余弦定理可求cosA,根据同角三角函数基本关系式即可求得sinA的值.
解答 解:∵b=$\sqrt{2}$c,sinA+$\sqrt{2}$sinC=2sinB,
∴a+$\sqrt{2}$c=2b=2$\sqrt{2}$c,
∴a=$\sqrt{2}$c,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{2}}{4}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{14}}{4}$.
故答案为:$\frac{\sqrt{14}}{4}$.
点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+1)2+y2=2 | B. | x2+(y+2)2=2 | ||
| C. | (x+3)2+y2=2 | D. | (x+1)2+y2=2或(x+3)2+y2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.16 | B. | 0.34 | C. | 0.42 | D. | 0.84 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $-\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com