| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有两个极值点x1,x2,f′(x)=x2+2ax+b=0有两个不相等的实数根,△=4a2-4b>0.而方程(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.
解答 解:函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有两个极值点x1,x2,![]()
∴f′(x)=x2+2ax+b=0有两个不相等的实数根,
∴△=4a2-4b>0.
而方程(f(x))2+2af(x)+b=0的△1=△>0,
∴此方程有两解且f(x)=x1或x2,
不妨取0<x1<x2,f(x1)>0.
①把y=f(x)向下平移x1个单位即可得到y=f(x)-x1的图象,
∵f(x1)=x1,可知方程f(x)=x1有两解.
②把y=f(x)向下平移x2个单位即可得到y=f(x)-x2的图象,∵f(x1)=x1,∴f(x1)-x2<0,可知方程f(x)=x2只有一解.
综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f(x))2+af(x)+b=0的只有3不同实根.
故选:C.
点评 本题考查了利用导数研究函数的单调性极值、方程的解转化为函数图象的交点,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(1,\sqrt{3})$ | B. | (1,2] | C. | $(\sqrt{3},+∞)$ | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {α|α=k•360°+437°,k∈Z} | B. | {α|α=k•360°+77°,k∈Z} | ||
| C. | {α|α=k•360°+283°,k∈Z} | D. | {α|α=k•360°-283°,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com