精英家教网 > 高中数学 > 题目详情
11.曲线y=alnx(a>0)在x=1处的切线与两坐标轴所围成的三角形的面积为4,则a的值为(  )
A.4B.-4C.8D.-8

分析 求出切线方程,然后求解坐标轴上的截距,求解三角形的面积即可.

解答 解:曲线y=alnx(a>0),
$f'(x)=\frac{a}{x}$,所以切线的斜率k=f'(1)=a,所以切线的方程为y=a(x-1),
所以切线与两坐标轴的交点坐标分别为A(1,0)和B(0,-a).
${S_{△AOB}}=\frac{1}{2}a=4$,解得a=8.
故选:C.

点评 本题考查曲线的切线方程的求法,三角形的面积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{a}$”;
②“(m+n)t=mt+nt”类比得到“($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$”;
③“t≠0,mt=nt⇒m=n”类比得到“$\overrightarrow{c}$≠0,$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow{b}$”;
④“|m•n|=|m|•|n|”类比得到“|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|”;
⑤“(m•n)t=m(n•t)”类比得到“($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)”;
⑥“$\frac{ac}{bc}$=$\frac{a}{b}$”类比得到$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow{b}•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow{b}}$.以上的式子中,类比得到的结论正确的是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.关于函数f(x)=4sin(2x+$\frac{π}{3}$)(x∈R),有下列说法:
①函数y=f(x)的图象向右平移$\frac{π}{3}$个单位后得到的图象关于原点对称;
②函数y=f(x)是以2π为最小正周期的周期函数;
③函数y=f(x)的图象关于点$({-\frac{π}{6},0})$对称;
④函数y=f(x)的图象关于直线x=$\frac{π}{6}$对称.
其中正确的是③.(填上所有你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xoy中,点P到$({0,-\sqrt{3}}),({0,\sqrt{3}})$两点的距离之和等于4,若点P的轨迹为C.
(1)求C的方程;
(2)如果经过点(0,1)的直线l交C于点A,B,且$\overrightarrow{OA}•\overrightarrow{AB}=0$,求该直线的方程及$|{\overrightarrow{AB}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}的前n项和为Sn,若Sn=2n-1(n∈N+),则a2017的值为(  )
A.2B.3C.2017D.3033

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}中,a1=-60,a17=-12.
(1)该数列第几项起为正?
(2)前多少项和最小?求数列{an}的前n项和Sn的最小值
(3)设Tn=|a1|+|a2|+|a3|+…+|an|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,求证:$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}-2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知 b=a3+$\frac{1}{1+a}$,a∈[0,1].  证明:
(1)b≥1-a+a2
(2)$\frac{3}{4}$<b≤$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案