分析 根据分析法的证明步骤,即可证明结论.
解答 证明:要证$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}-2$,
只要证明$\sqrt{{a^2}+\frac{1}{a^2}}$+2≥a+$\frac{1}{a}$+$\sqrt{2}$.
∵a>0,∴只要证明($\sqrt{{a^2}+\frac{1}{a^2}}$+2)2≥(a+$\frac{1}{a}$+$\sqrt{2}$)2,
只要证明2$\sqrt{{a^2}+\frac{1}{a^2}}$≥$\sqrt{2}$(a+$\frac{1}{a}$),
只要证明${a}^{2}+\frac{1}{{a}^{2}}$≥2,显然成立,
∴$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}-2$.
点评 用分析法证明不等式,即证明不等式成立的充分条件成立.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {α|α=k•360°+437°,k∈Z} | B. | {α|α=k•360°+77°,k∈Z} | ||
| C. | {α|α=k•360°+283°,k∈Z} | D. | {α|α=k•360°-283°,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com