精英家教网 > 高中数学 > 题目详情
7.已知数列{an}中,a1=3,an+1=$\frac{1}{{a}_{n}-1}$+1,则a2014=(  )
A.-$\frac{1}{2}$B.$\frac{3}{2}$C.3D.4

分析 由题意可知{an-1}为周期数列且周期为2,a1-1=2,即可求出答案

解答 解:∵,an+1=$\frac{1}{{a}_{n}-1}$+1,∴,an+1-1=$\frac{1}{{a}_{n}-1}$=an-1-1,
∴{an-1}为周期数列且周期为2,a1-1=2,
∴a2014-1=a2-1=$\frac{1}{{a}_{1}-1}$=$\frac{1}{2}$,
∴a2014=$\frac{3}{2}$.
故选:B.

点评 本题考查数列递推式,考查数列的通项,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a•(\overrightarrow a+2\overrightarrow b)=0$,$|\overrightarrow a|=|\overrightarrow b|=2$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边过点$P(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,则sinα=(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在10件产品中,有8种合格品,2件次品,从这10件产品中任意抽出3件,抽出的3件中至少有1件是次品的抽法种数为(  )
A.64B.72C.384D.432

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.关于函数f(x)=4sin(2x+$\frac{π}{3}$)(x∈R),有下列说法:
①函数y=f(x)的图象向右平移$\frac{π}{3}$个单位后得到的图象关于原点对称;
②函数y=f(x)是以2π为最小正周期的周期函数;
③函数y=f(x)的图象关于点$({-\frac{π}{6},0})$对称;
④函数y=f(x)的图象关于直线x=$\frac{π}{6}$对称.
其中正确的是③.(填上所有你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:
积极参加班级工作不积极参加班级工作合计
学习积极性高18725
学习积极性不高61925
合计242650
(1)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(2)有多少的把握认为“学生的学习积极性与对待班级工作的态度”有关系?请说明理由.
附:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xoy中,点P到$({0,-\sqrt{3}}),({0,\sqrt{3}})$两点的距离之和等于4,若点P的轨迹为C.
(1)求C的方程;
(2)如果经过点(0,1)的直线l交C于点A,B,且$\overrightarrow{OA}•\overrightarrow{AB}=0$,求该直线的方程及$|{\overrightarrow{AB}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平行六面体ABCD-A1B1C1D1中,AB=2,AD=3,AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,则对角线AC1的长为$\sqrt{19}$.

查看答案和解析>>

同步练习册答案