精英家教网 > 高中数学 > 题目详情
15.在10件产品中,有8种合格品,2件次品,从这10件产品中任意抽出3件,抽出的3件中至少有1件是次品的抽法种数为(  )
A.64B.72C.384D.432

分析 间接法:任抽三件,再排除全是正品的,即可得到抽出的3件中至少有1件是次品的抽法
直接法,分两类一件次品和两件次品,根据分类计数原理可得.

解答 解:间接法:抽出的3件产品中至少有1件是次品的抽法有C103-C83=120-56=64种,
直接法,分两类一件次品和两件次品,故有C21C82+C22C81=56+8=64种,
故选:A

点评 本题考查组合知识的运用,考查学生利益数学知识解决实际问题的能力,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.$(x+\frac{1}{x}){(ax-1)^5}$的展开式中各项系数的和为2,则该展开式中常数项为(  )
A.-20B.-10C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE
 (2)PC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球不喜爱打篮球合计
男生20525               
女生101525
合计302050
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}{满足a1=1,an+1-an=2,等比数列{bn}满足b1=a1,b4=8
(I)求数列{an},{bn}的通项公式;
(II)设cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$y=|{sin({2x-\frac{π}{6}})}|$,以下说法正确的是(  )
A.函数的最小正周期为$\frac{π}{4}$B.函数是偶函数
C.函数图象的一条对称轴为$x=\frac{π}{3}$D.函数在$[{\frac{2π}{3},\frac{5π}{6}}]$上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}中,a1=3,an+1=$\frac{1}{{a}_{n}-1}$+1,则a2014=(  )
A.-$\frac{1}{2}$B.$\frac{3}{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知以点C为圆心的圆经过点A(-1,2)和点B(3,4),且圆心在直线x+3y-15=0上.
(1)求圆C的方程;
(2)设点P在圆C上,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正四棱锥的底面边长是2cm,侧棱长是$\sqrt{3}$cm,则该正四棱锥的体积为$\frac{4}{3}c{m}^{3}$.

查看答案和解析>>

同步练习册答案