精英家教网 > 高中数学 > 题目详情
3.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球不喜爱打篮球合计
男生20525               
女生101525
合计302050
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$,可得喜爱打篮球的学生,即可得到列联表;
(2)利用公式求得K2,与临界值比较,即可得到结论.

解答 解:(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$,可得喜爱打篮球的学生为30人,故可得列联表补充如下:

喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
(2)∵K2=$\frac{50×(20×15-10×5)^{2}}{30×20×25×25}$≈8.333>7.879
∴有99.5%的把握认为喜爱打篮球与性别有关.

点评 本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,如果输入n=3,则输出的S值为(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$y={log_{\frac{1}{2}}}({x^2}-4x-5)$的递增区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为60°,那么$|{3\overrightarrow a+\overrightarrow b}|$等于(  )
A.4B.$\sqrt{13}$C.$\sqrt{10}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边过点$P(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,则sinα=(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=-\frac{1}{3}{x^3}+b{x^2}+cx+bc$在x=1处有极值$-\frac{4}{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在10件产品中,有8种合格品,2件次品,从这10件产品中任意抽出3件,抽出的3件中至少有1件是次品的抽法种数为(  )
A.64B.72C.384D.432

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:
积极参加班级工作不积极参加班级工作合计
学习积极性高18725
学习积极性不高61925
合计242650
(1)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(2)有多少的把握认为“学生的学习积极性与对待班级工作的态度”有关系?请说明理由.
附:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列不等式中,正确的是(  )
A.$tan\frac{13π}{4}>tan\frac{13π}{3}$B.$sin\frac{π}{5}>cos\frac{π}{5}$C.$cos\frac{3π}{5}<cos(-\frac{2π}{5})$D.cos 55°>tan 35°

查看答案和解析>>

同步练习册答案