精英家教网 > 高中数学 > 题目详情
14.函数$y={log_{\frac{1}{2}}}({x^2}-4x-5)$的递增区间为(-∞,-1).

分析 由已知中函数y=log0.5(x2-4x-5)的解析式,先确定函数的定义域,进而根据二次函数和对数函数的性质,分别判断内,外函数的单调性,进而根据复合函数“同增异减”的原则,得到答案.

解答 解:函数y=log0.5(x2-4x-5)的定义域为(-∞,-1)∪(5,+∞)
令t=x2-4x-5,则y=log0.5t,
∵y=log0.5t为减函数,
t=x2-4x-5的单调递减区间是(-∞,2),单调递增区间是(2,+∞)
故函数y=log0.5(x2-4x-5)的单调递增区间是(-∞,-1).
故答案为:(-∞,-1).

点评 本题考查的知识点是二次函数的图象和性质,对数函数的单调区间,复合函数的单调性,其中复合函数单调性“同增异减”的原则,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设方程f(x)=x-ln(ax)=0(a≠0,e为自然对数的底数),则(  )
A.当a<0时,方程没有实数根B.当0<a<e时,方程有一个实数根
C.当a=e,方程有三个实数根D.当a>e时,方程有两个实数根

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$(x+\frac{1}{x}){(ax-1)^5}$的展开式中各项系数的和为2,则该展开式中常数项为(  )
A.-20B.-10C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设α、β、γ为平面,m、n、l为直线,则能推m⊥β是(  )
A.α⊥β,α∩β=l,m⊥lB.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=lg(x2-x)-lg(x-1).且f(x0)=2.则x0=100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义:从一个数列{an}中抽取若干项(不少于三项)按其在{an}中的次序排列的一列数叫做{an}的子数列,成等差(等比)的子数列叫做{an}的等差(等比)子列.
(1)记数列{an}的前n项和为Sn,已知Sn=n2,求证:数列{a3n}是数列{an}的等差子列;
(2)设等差数列{an}的各项均为整数,公差d≠0,a5=6,若数列a3,a5,a${\;}_{{n}_{1}}$是数列{an}的等比子列,求n1的值;
(3)设数列{an}是各项均为实数的等比数列,且公比q≠1,若数列{an}存在无穷多项的等差子列,求公比q的所有值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE
 (2)PC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球不喜爱打篮球合计
男生20525               
女生101525
合计302050
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知以点C为圆心的圆经过点A(-1,2)和点B(3,4),且圆心在直线x+3y-15=0上.
(1)求圆C的方程;
(2)设点P在圆C上,求△PAB的面积的最大值.

查看答案和解析>>

同步练习册答案