精英家教网 > 高中数学 > 题目详情
6.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE
 (2)PC⊥BD.

分析 (1)连接OE,OE∥PA,由直线与平面平行的判定定理,可证得PA∥平面BDE;
(2)由PO⊥底面ABCD,可得PO⊥BD;底面为正方形,可得BD⊥AC,由直线和平面垂直的判定定理,可得BD⊥平面PAC,可证得PC⊥BD.

解答 证明:(1)如图,连接OE
∵O为AC中点,E为PC中点.
∴OE为△PAC的中位线,
∴OE∥PA,
∵OE?平面BDE,PA?平面BDE,
∴PA∥平面BDE.
(2)∵底面ABCD为正方形,
∴BD⊥AC,
∵PO⊥平面ABCD,BD?平面ABCD,
∴PO⊥BD,
∵PO?平面PAC,AC?平面PAC,AC∩PO=O,
∴BD⊥平面PAC,
∵PC?平面PAC,
∴PC⊥BD.

点评 本题主要考查了直线与平面平行的判定定理、直线和平面垂直的性质、直线和平面垂直的判定定理与性质定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若数列{an},{bn}的通项公式分别为an=(-1)n+2016•a,bn=2+$\frac{{{{(-1)}^{n+2017}}}}{n}$,且an<bn,对任意n∈N*恒成立,则实数a的取值范围是(  )
A.$[-1,\frac{1}{2})$B.[-1,1)C.[-2,1)D.$[-2,\frac{3}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a•(\overrightarrow a+2\overrightarrow b)=0$,$|\overrightarrow a|=|\overrightarrow b|=2$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$y={log_{\frac{1}{2}}}({x^2}-4x-5)$的递增区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{a}$”;
②“(m+n)t=mt+nt”类比得到“($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$”;
③“t≠0,mt=nt⇒m=n”类比得到“$\overrightarrow{c}$≠0,$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow{b}$”;
④“|m•n|=|m|•|n|”类比得到“|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|”;
⑤“(m•n)t=m(n•t)”类比得到“($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)”;
⑥“$\frac{ac}{bc}$=$\frac{a}{b}$”类比得到$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow{b}•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow{b}}$.以上的式子中,类比得到的结论正确的是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为60°,那么$|{3\overrightarrow a+\overrightarrow b}|$等于(  )
A.4B.$\sqrt{13}$C.$\sqrt{10}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边过点$P(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,则sinα=(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在10件产品中,有8种合格品,2件次品,从这10件产品中任意抽出3件,抽出的3件中至少有1件是次品的抽法种数为(  )
A.64B.72C.384D.432

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案